ترغب بنشر مسار تعليمي؟ اضغط هنا

STraTA: Self-Training with Task Augmentation for Better Few-shot Learning

187   0   0.0 ( 0 )
 نشر من قبل Tu Vu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite their recent successes in tackling many NLP tasks, large-scale pre-trained language models do not perform as well in few-shot settings where only a handful of training examples are available. To address this shortcoming, we propose STraTA, which stands for Self-Training with Task Augmentation, an approach that builds on two key ideas for effective leverage of unlabeled data. First, STraTA uses task augmentation, a novel technique that synthesizes a large amount of data for auxiliary-task fine-tuning from target-task unlabeled texts. Second, STraTA performs self-training by further fine-tuning the strong base model created by task augmentation on a broad distribution of pseudo-labeled data. Our experiments demonstrate that STraTA can substantially improve sample efficiency across 12 few-shot benchmarks. Remarkably, on the SST-2 sentiment dataset, STraTA, with only 8 training examples per class, achieves comparable results to standard fine-tuning with 67K training examples. Our analyses reveal that task augmentation and self-training are both complementary and independently effective.



قيم البحث

اقرأ أيضاً

101 - Fei Mi , Wanhao Zhou , Fengyu Cai 2021
As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promis ing results for few-shot learning in ToD. In this paper, we devise a self-training approach to utilize the abundant unlabeled dialog data to further improve state-of-the-art pre-trained models in few-shot learning scenarios for ToD systems. Specifically, we propose a self-training approach that iteratively labels the most confident unlabeled data to train a stronger Student model. Moreover, a new text augmentation technique (GradAug) is proposed to better train the Student by replacing non-crucial tokens using a masked language model. We conduct extensive experiments and present analyses on four downstream tasks in ToD, including intent classification, dialog state tracking, dialog act prediction, and response selection. Empirical results demonstrate that the proposed self-training approach consistently improves state-of-the-art pre-trained models (BERT, ToD-BERT) when only a small number of labeled data are available.
Most few-shot learning techniques are pre-trained on a large, labeled base dataset. In problem domains where such large labeled datasets are not available for pre-training (e.g., X-ray, satellite images), one must resort to pre-training in a differen t source problem domain (e.g., ImageNet), which can be very different from the desired target task. Traditional few-shot and transfer learning techniques fail in the presence of such extreme differences between the source and target tasks. In this paper, we present a simple and effective solution to tackle this extreme domain gap: self-training a source domain representation on unlabeled data from the target domain. We show that this improves one-shot performance on the target domain by 2.9 points on average on the challenging BSCD-FSL benchmark consisting of datasets from multiple domains. Our code is available at https://github.com/cpphoo/STARTUP.
Sequence labeling is an important technique employed for many Natural Language Processing (NLP) tasks, such as Named Entity Recognition (NER), slot tagging for dialog systems and semantic parsing. Large-scale pre-trained language models obtain very g ood performance on these tasks when fine-tuned on large amounts of task-specific labeled data. However, such large-scale labeled datasets are difficult to obtain for several tasks and domains due to the high cost of human annotation as well as privacy and data access constraints for sensitive user applications. This is exacerbated for sequence labeling tasks requiring such annotations at token-level. In this work, we develop techniques to address the label scarcity challenge for neural sequence labeling models. Specifically, we develop self-training and meta-learning techniques for training neural sequence taggers with few labels. While self-training serves as an effective mechanism to learn from large amounts of unlabeled data -- meta-learning helps in adaptive sample re-weighting to mitigate error propagation from noisy pseudo-labels. Extensive experiments on six benchmark datasets including two for massive multilingual NER and four slot tagging datasets for task-oriented dialog systems demonstrate the effectiveness of our method. With only 10 labeled examples for each class for each task, our method obtains 10% improvement over state-of-the-art systems demonstrating its effectiveness for the low-resource setting.
100 - Jing Zhou , Yanan Zheng , Jie Tang 2021
Most previous methods for text data augmentation are limited to simple tasks and weak baselines. We explore data augmentation on hard tasks (i.e., few-shot natural language understanding) and strong baselines (i.e., pretrained models with over one bi llion parameters). Under this setting, we reproduced a large number of previous augmentation methods and found that these methods bring marginal gains at best and sometimes degrade the performance much. To address this challenge, we propose a novel data augmentation method FlipDA that jointly uses a generative model and a classifier to generate label-flipped data. Central to the idea of FlipDA is the discovery that generating label-flipped data is more crucial to the performance than generating label-preserved data. Experiments show that FlipDA achieves a good tradeoff between effectiveness and robustness---it substantially improves many tasks while not negatively affecting the others.
Few-shot text classification is a fundamental NLP task in which a model aims to classify text into a large number of categories, given only a few training examples per category. This paper explores data augmentation -- a technique particularly suitab le for training with limited data -- for this few-shot, highly-multiclass text classification setting. On four diverse text classification tasks, we find that common data augmentation techniques can improve the performance of triplet networks by up to 3.0% on average. To further boost performance, we present a simple training strategy called curriculum data augmentation, which leverages curriculum learning by first training on only original examples and then introducing augmented data as training progresses. We explore a two-stage and a gradual schedule, and find that, compared with standard single-stage training, curriculum data augmentation trains faster, improves performance, and remains robust to high amounts of noising from augmentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا