ﻻ يوجد ملخص باللغة العربية
Using a suite of self-similar cosmological simulations, we measure the probability distribution functions (PDFs) of real-space density, redshift-space density, and their geometric mean. We find that the real-space density PDF is well-described by a function of two parameters: $n_s$, the spectral slope, and $sigma_L$, the linear rms density fluctuation. For redshift-space density and the geometric mean of real- and redshift-space densities, we introduce a third parameter, $s_L={sqrt{langle(dv^L_{rm pec}/dr)^2rangle}}/{H}$. We find that density PDFs for the LCDM cosmology is also well-parameterized by these three parameters. As a result, we are able to use a suite of self-similar cosmological simulations to approximate density PDFs for a range of cosmologies. We make the density PDFs publicly available and provide an analytical fitting formula for them.
We introduce the position-dependent probability distribution function (PDF) of the smoothed matter field as a cosmological observable. In comparison to the PDF itself, the spatial variation of the position-dependent PDF is simpler to model and has di
In this work, we studied the impact of galaxy morphology on photometric redshift (photo-$z$) probability density functions (PDFs). By including galaxy morphological parameters like the radius, axis-ratio, surface brightness and the Sersic index in ad
We measure the Voronoi density probability distribution function (PDF) for both dark matter and halos in N-body simulations. For the dark matter, Voronoi densities represent the matter density field smoothed on a uniform mass scale, which approximate
In a search for the signature of turbulence in the diffuse interstellar medium in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived fr
Despite the high accuracy of photometric redshifts (zphot) derived using Machine Learning (ML) methods, the quantification of errors through reliable and accurate Probability Density Functions (PDFs) is still an open problem. First, because it is dif