ﻻ يوجد ملخص باللغة العربية
In the region between two closely located stiff inclusions, the stress, which is the gradient of a solution to the Lam{e} system with partially infinite coefficients, may become arbitrarily large as the distance between interfacial boundaries of inclusions tends to zero. The primary aim of this paper is to give a sharp description in terms of the asymptotic behavior of the stress concentration, as the distance between interfacial boundaries of inclusions goes to zero. For that purpose we capture all the blow-up factor matrices, whose elements comprise of some certain integrals of the solutions to the case when two inclusions are touching. Then we are able to establish the asymptotic formulas of the stress concentration in the presence of two close-to-touching $m$-convex inclusions in all dimensions. Furthermore, an example of curvilinear squares with rounded-off angles is also presented for future application in numerical computations and simulations.
We consider the Lam{e} system arising from high-contrast composite materials whose inclusions (fibers) are nearly touching the matrix boundary. The stress, which is the gradient of the solution, always concentrates highly in the narrow regions betwee
We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1<p leq N$. We prove optima
In high-contrast composites, if an inclusion is in close proximity to the matrix boundary, then the stress, which is represented by the gradient of a solution to the Lam{e} systems of linear elasticity, may exhibits the singularities with respect to
In this paper, we establish the asymptotic expressions for the gradient of a solution to the Lam{e} systems with partially infinity coefficients as two rigid $C^{1,gamma}$-inclusions are very close but not touching. The novelty of these asymptotics,
We perform the asymptotic analysis of parabolic equations with stiff transport terms. This kind of problem occurs, for example, in collisional gyrokinetic theory for tokamak plasmas, where the velocity diffusion of the collision mechanism is dominate