ﻻ يوجد ملخص باللغة العربية
We present sweeping line graphs, a generalization of $Theta$-graphs. We show that these graphs are spanners of the complete graph, as well as of the visibility graph when line segment constraints or polygonal obstacles are considered. Our proofs use general inductive arguments to make the step to the constrained setting that could apply to other spanner constructions in the unconstrained setting, removing the need to find separate proofs that they are spanning in the constrained and polygonal obstacle settings.
In this thesis, we study two different graph problems. The first problem revolves around geometric spanners. Here, we have a set of points in the plane and we want to connect them with straight line segments, such that there is a path between each
In this paper, we study the online Euclidean spanners problem for points in $mathbb{R}^d$. Suppose we are given a sequence of $n$ points $(s_1,s_2,ldots, s_n)$ in $mathbb{R}^d$, where point $s_i$ is presented in step~$i$ for $i=1,ldots, n$. The objec
Let $P subset mathbb{R}^2$ be a planar $n$-point set such that each point $p in P$ has an associated radius $r_p > 0$. The transmission graph $G$ for $P$ is the directed graph with vertex set $P$ such that for any $p, q in P$, there is an edge from $
Efficient algorithms are presented for constructing spanners in geometric intersection graphs. For a unit ball graph in R^k, a (1+epsilon)-spanner is obtained using efficient partitioning of the space into hypercubes and solving bichromatic closest p
Lightness and sparsity are two natural parameters for Euclidean $(1+varepsilon)$-spanners. Classical results show that, when the dimension $din mathbb{N}$ and $varepsilon>0$ are constant, every set $S$ of $n$ points in $d$-space admits an $(1+varepsi