ﻻ يوجد ملخص باللغة العربية
Phase retrieval aims at reconstructing unknown signals from magnitude measurements of linear mixtures. In this paper, we consider the phase retrieval with dictionary learning problem, which includes an additional prior information that the measured signal admits a sparse representation over an unknown dictionary. The task is to jointly estimate the dictionary and the sparse representation from magnitude-only measurements. To this end, we study two complementary formulations and propose efficient parallel algorithms based on the successive convex approximation framework. The first algorithm is termed compact-SCAphase and is preferable in the case of less diverse mixture models. It employs a compact formulation that avoids the use of auxiliary variables. The proposed algorithm is highly scalable and has reduced parameter tuning cost. The second algorithm, referred to as SCAphase, uses auxiliary variables and is favorable in the case of highly diverse mixture models. It also renders simple incorporation of additional side constraints. The performance of both methods is evaluated when applied to blind sparse channel estimation from subband magnitude measurements in a multi-antenna random access network. Simulation results demonstrate the efficiency of the proposed techniques compared to state-of-the-art methods.
This paper proposes a novel algorithm for image phase retrieval, i.e., for recovering complex-valued images from the amplitudes of noisy linear combinations (often the Fourier transform) of the sought complex images. The algorithm is developed using
We propose a successive convex approximation based off-policy optimization (SCAOPO) algorithm to solve the general constrained reinforcement learning problem, which is formulated as a constrained Markov decision process (CMDP) in the context of avera
In imaging modalities recording diffraction data, the original image can be reconstructed assuming known phases. When phases are unknown, oversampling and a constraint on the support region in the original object can be used to solve a non-convex opt
The first moment and second central moments of the portfolio return, a.k.a. mean and variance, have been widely employed to assess the expected profit and risk of the portfolio. Investors pursue higher mean and lower variance when designing the portf
Phase retrieval (PR), also sometimes referred to as quadratic sensing, is a problem that occurs in numerous signal and image acquisition domains ranging from optics, X-ray crystallography, Fourier ptychography, sub-diffraction imaging, and astronomy.