ﻻ يوجد ملخص باللغة العربية
We study an Abelian gauge extension of the standard model with fermion families having non-universal gauge charges. The gauge charges and scalar content are chosen in such an anomaly-free way that only the third generation fermions receive Dirac masses via renormalisable couplings with the Higgs boson. Incorporating additional vector like fermions and scalars with appropriate $U(1)$ charges can lead to radiative Dirac masses of first two generations with neutral fermions going in the loop being dark matter candidates. Focusing on radiative muon mass, we constrain the model from the requirement of satisfying muon mass, recently measured muon anomalous magnetic moment by the E989 experiment at Fermilab along with other experimental bounds including the large hadron collider (LHC) limits. The anomalous Higgs coupling to muon is constrained from the LHC measurements of Higgs to dimuon decay. The singlet fermion dark matter phenomenology is discussed showing the importance of both annihilation and coannihilation effects. Incorporating all bounds lead to a constrained parameter space which can be probed at different experiments.
We study an extension of the minimal gauged $L_{mu}-L_{tau}$ model in order to explain the anomalous magnetic moments of muon and electron simultaneously. Presence of an additional scalar doublet $eta$ and an in-built $Z_2$ symmetry under which the r
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_mu - L_tau$ gauge symmetry, two
Models of gauged $U(1)_{L_mu-L_tau}$ can provide a solution to the long-standing discrepancy between the theoretical prediction for the muon anomalous magnetic moment and its measured value. The extra contribution is due to a new light vector mediato
A very economic scenario with just three extra scalar fields beyond the Standard Model is invoked to explain the muon anomalous magnetic moment, the requisite relic abundance of dark matter as well as the Xenon-1T excess through the inelastic down-scattering of the dark scalar.
We propose a neutrinophilic two Higgs doublet model with hidden local $U(1)$ symmetry, where active neutrinos are Dirac type, and a fermionic DM candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaki