ﻻ يوجد ملخص باللغة العربية
The large tunability of band gaps and optical absorptions of armchair MoS$_2$ nanoribbons of different widths under bending is studied using density functional theory and many-body perturbation GW and Bethe-Salpeter equation approaches. We find that there are two critical bending curvatures, and the non-edge and edge band gaps generally show a non-monotonic trend with bending. The non-degenerate edge gap splits show an oscillating feature with ribbon width n, with a period delta_n=3, due to quantum confinement effects. The complex strain patterns on the bent nanoribbons control the varying features of band structures and band gaps that result in varying exciton formations and optical properties. The binding energy and the spin singlet-triplet split of the exciton forming the lowest absorption peak generally decrease with bending curvatures. The large tunability of optical properties of bent MoS$_2$ nanoribbons is promising and will find applications in tunable optoelectronic nanodevices.
We report the infrared transmission measurement on electrically gated twisted bilayer graphene. The optical absorption spectrum clearly manifests the dramatic changes such as the splitting of inter-linear-band absorption step, the shift of inter-van
In the emerging world of twisted bilayer structures, the possible configurations are limitless, which enables for a rich landscape of electronic properties. In this paper, we focus on twisted bilayer transition metal dichalcogenides (TMDCs) and study
Non-volatile memory devices have been limited to flash architectures that are complex devices. Here, we present a unique photomemory effect in MoS$_2$ transistors. The photomemory is based on a photodoping effect - a controlled way of manipulating th
We discuss here the effect of band nesting and topology on the spectrum of excitons in a single layer of MoS$_2$, a prototype transition metal dichalcogenide material. We solve for the single particle states using the ab initio based tight-binding mo
In-plane optical anisotropy has been detected from monolayer MoS$_2$ grown on a-plane (11-20) sapphire substrate in the ultraviolet-visible wavelength range. Based on the measured optical anisotropy, the energy differences between the optical transit