ﻻ يوجد ملخص باللغة العربية
A novel photonic approach to the time-frequency analysis of microwave signals is proposed based on the stimulated Brillouin scattering (SBS)-assisted frequency-to-time mapping (FTTM). Two types of time-frequency analysis links, namely parallel SBS link and time-division SBS link are proposed. The parallel SBS link can be utilized to perform real-time time-frequency analysis of microwave signal, which provides a promising solution for real-time time-frequency analysis, especially when it is combined with the photonic integration technique. A simulation is made to verify its feasibility by analyzing signals in multiple formats. The time-division SBS link has a simpler and reconfigurable structure, which can realize an ultra-high-resolution time-frequency analysis for periodic signals using the time segmentation and accumulation technique. An experiment is performed for the time-division SBS link. The multi-dimensional reconfigurability of the system is experimentally studied. An analysis bandwidth of 3.9 GHz, an analysis frequency up to 20 GHz, and a frequency resolution of 15 MHz are demonstrated, respectively.
A photonic-assisted multiple radio frequency (RF) measurement approach based on stimulated Brillouin scattering (SBS) and frequency-to-time mapping with high accuracy and high-frequency resolution is reported. A two-tone signal is single-sideband (SS
Realizing highly sensitive interferometry is essential to accurate observation of quantum properties. Here we study two kinds of Ramsey interference fringes in a whispering-gallery resonator, where the coherent phonons for free evolution can be achie
Highly selective and reconfigurable microwave filters are of great importance in radio-frequency signal processing. Microwave photonic (MWP) filters are of particular interest, as they offer flexible reconfiguration and an order of magnitude higher f
We compute the SBS gain for a metamaterial comprising a cubic lattice of dielectric spheres suspended in a background dielectric material. Theoretical methods are presented to calculate the optical, acoustic, and opto-acoustic parameters that describ
Using full opto-acoustic numerical simulations, we demonstrate enhancement and suppression of the SBS gain in a metamaterial comprising a subwavelength cubic array of dielectric spheres suspended in a dielectric background material. We develop a gene