ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic trends of neutron skin thickness versus relative neutron excess

547   0   0.0 ( 0 )
 نشر من قبل Xiaolin Tu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Available experimental neutron skin thicknesses of even-even stable Ca, Ni, Sn, Pb, and Cd isotopes are evaluated, and separate trends of neutron skin thickness versus relative neutron excess $delta=(N-Z)/A$ are firstly observed for different isotopic chains. This phenomenon is quantitatively reproduced by the deformed Skyrme Hartree-Fock $+$ BCS model with SLy4 force.



قيم البحث

اقرأ أيضاً

We present and discuss numerical predictions for the neutron density distribution of $^{208}$Pb using various non-relativistic and relativistic mean-field models for the nuclear structure. Our results are compared with the very recent pion photoprodu ction data from Mainz. The parity-violating asymmetry parameter for elastic electron scattering at the kinematics of the PREX experiment at JLab and the neutron skin thickness are compared with the available data. We consider also the dependence between the neutron skin and the parameters of the expansion of the symmetry energy.
102 - Q. Zhao , Y. Suzuki , J. He 2021
The interplay between the formation of neutron skin and alpha cluster at the dilute surface of neutron-rich nuclei is one of the interesting subjects in the study of neutron-rich nuclei and nuclear clustering. A theoretical model has predicted that t he growth of neutron skin will prevent the alpha clustering at the nuclear surface. Quite recently, this theoretical perspective; the suppression of alpha clustering by the neutron-skin formation was first confirmed experimentally in Sn isotopes as the reduction of the (p, p alpha) reaction cross-section. Motivated by the novel discovery, in this work, we have investigated the relationship between the neutron-skin thickness and alpha clustering in C isotopes. Based on the analysis by the antisymmetrized molecular dynamics, we show that the alpha spectroscopic factor at nuclear exterior decreases in neutron-rich C isotopes, and the clustering suppression looks correlated with the growth of the neutron-skin thickness.
In the present work, we use a finite range effective interaction to calculate the neutron skin thickness in $^{48}$Ca and correlate these quantities with the parameters of nuclear symmetry energy. Available experimental data on the neutron skin thick ness in $^{48}$Ca are used to deduce information on the density slope parameter and the curvature symmetry parameter of the nuclear symmetry energy at saturation and at subsaturation densities. We obtained the constraints such as $54.5leq L(rho_0) leq 97.5$ MeV and $47.3leq L(rho_c) leq 57.1$ MeV for the density slope parameter. The constraints on the curvature symmetry energy parameter are obtained as $-170.7leq K_{sym}(rho_0) leq -43.4$ MeV and $-80.8leq K_{sym}(rho_c) leq 23.8$ MeV. A linear relation between the neutron skin thickness in $^{48}$Ca and in $^{2088}$Pb is obtained.
A nonlocal dispersive-optical-model analysis has been carried out for neutrons and protons in $^{48}$Ca. Elastic-scattering angular distributions, total and reaction cross sections, single-particle energies, the neutron and proton numbers, and the ch arge distribution have been fitted to extract the neutron and proton self-energies both above and below the Fermi energy. From the single-particle propagator resulting from these self-energies we have determined the charge and neutron matter distributions in $^{48}$Ca. A neutron skin of 0.249$pm$0.023~fm is deduced. The energy dependence of the total neutron cross sections is shown to have strong sensitivity to the skin thickness.
The reaction cross section $sigma_R$ is useful to determine the neutron radius $R_n$ as well as the matter radius $R_m$. The chiral (Kyushu) $g$-matrix folding model for $^{12}$C scattering on $^{9}$Be, $^{12}$C, $^{27}$Al targets was tested in the incident energy range of $30 lsim E_{rm in} lsim 400 $ MeV, and it is found that the model reliably reproduces the $sigma_R$ in $30 lsim E_{rm in} lsim 100 $ MeV and $250 lsim E_{rm in} lsim 400$ MeV. item[Aim] We determine $R_n$ and the neutron skin thickness $R_{rm skin}$ of ${}^{208}{rm Pb}$ by using high-quality $sigma_R$ data for the $p+{}^{208}{rm Pb}$ scattering in $30 leq E_{rm in} leq 100$ MeV. The theoretical model is the Kyushu $g$-matrix folding model with the densities calculated with Gongny-D1S HFB (GHFB) with the angular momentum projection (AMP). item[Results] The Kyushu $g$-matrix folding model with the GHFB+AMP densities underestimates $sigma_{rm R}$ in $30 leq E_{rm in} leq 100$~MeV only by a factor of 0.97. Since the proton radius $R_p$ calculated with GHFB+AMP agrees with the precise experimental data of 5.444 fm, the small deviation of the theoretical result from the data on $sigma_R$ allows us to scale the GHFB+AMP neutron density so as to reproduce the $sigma_R$ data. In $E_{rm in}$ = 30--100 MeV, the experimental $sigma_R$ data can be reproduced by assuming the neutron radius of ${}^{208}{rm Pb}$ as $R_n$ = $5.722 pm 0.035$ fm. item[Conclusion] The present result $R_{rm skin}$ = $0.278 pm 0.035$ fm is in good agreement with the recent PREX-II result of $r_{rm skin}$ = $0.283pm 0.071$ fm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا