ﻻ يوجد ملخص باللغة العربية
We report synthesis of single crystalline NaMnAs, confirm its antiferromagnetic order and characterise the sample by photoemission spectroscopy. The electronic structure was studied using optical transmittance, x-ray and ultraviolet spectroscopy and by theoretical modeling using local density approximation (LDA) extended to LDA+U when Heisenberg model parameters were determined. Optical transmittance measurement have confirmed the theoretical predictions that NaMnAs is a semiconductor. Also the Neel temperature was closer determined for the first time from temperature dependence of magnetization, in agreement with our Monte Carlo simulations.
Two modifications of CeCuSn were prepared from the elements: the high-temperature (beta) modification crystallizes directly from the quenched sample, while the low-temperature (alpha) modification forms after annealing at 700 deg C for one month. Bot
Alternating layers of granular Iron (Fe) and Titanium dioxide (TiO$_{2-delta}$) were deposited on (100) Lanthanum aluminate (LaAlO$_3$) substrates in low oxygen chamber pressure using a controlled pulsed laser ablation deposition technique. The total
Single-crystal diffuse scattering data have been collected at room temperature on synthetic titanite using both neutrons and high-energy X-rays. A simple ball-and-springs model reproduces the observed diffuse scattering well, confirming its origin to
We address the low-energy effective Hamiltonian of electron doped d0 perovskite semiconductors in cubic and tetragonal phases using the k*p method. The Hamiltonian depends on the spin-orbit interaction strength, on the temperature-dependent tetragona
We report magnetism in carbon doped ZnO. Our first-principles calculations based on density functional theory predicted that carbon substitution for oxygen in ZnO results in a magnetic moment of 1.78 $mu_B$ per carbon. The theoretical prediction was