ترغب بنشر مسار تعليمي؟ اضغط هنا

CyGIL: A Cyber Gym for Training Autonomous Agents over Emulated Network Systems

428   0   0.0 ( 0 )
 نشر من قبل Li Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given the success of reinforcement learning (RL) in various domains, it is promising to explore the application of its methods to the development of intelligent and autonomous cyber agents. Enabling this development requires a representative RL training environment. To that end, this work presents CyGIL: an experimental testbed of an emulated RL training environment for network cyber operations. CyGIL uses a stateless environment architecture and incorporates the MITRE ATT&CK framework to establish a high fidelity training environment, while presenting a sufficiently abstracted interface to enable RL training. Its comprehensive action space and flexible game design allow the agent training to focus on particular advanced persistent threat (APT) profiles, and to incorporate a broad range of potential threats and vulnerabilities. By striking a balance between fidelity and simplicity, it aims to leverage state of the art RL algorithms for application to real-world cyber defence.



قيم البحث

اقرأ أيضاً

Cybersecurity tools are increasingly automated with artificial intelligent (AI) capabilities to match the exponential scale of attacks, compensate for the relatively slower rate of training new cybersecurity talents, and improve of the accuracy and p erformance of both tools and users. However, the safe and appropriate usage of autonomous cyber attack tools - especially at the development stages for these tools - is still largely an unaddressed gap. Our survey of current literature and tools showed that most of the existing cyber range designs are mostly using manual tools and have not considered augmenting automated tools or the potential security issues caused by the tools. In other words, there is still room for a novel cyber range design which allow security researchers to safely deploy autonomous tools and perform automated tool testing if needed. In this paper, we introduce Pandora, a safe testing environment which allows security researchers and cyber range users to perform experiments on automated cyber attack tools that may have strong potential of usage and at the same time, a strong potential for risks. Unlike existing testbeds and cyber ranges which have direct compatibility with enterprise computer systems and the potential for risk propagation across the enterprise network, our test system is intentionally designed to be incompatible with enterprise real-world computing systems to reduce the risk of attack propagation into actual infrastructure. Our design also provides a tool to convert in-development automated cyber attack tools into to executable test binaries for validation and usage realistic enterprise system environments if required. Our experiments tested automated attack tools on our proposed system to validate the usability of our proposed environment. Our experiments also proved the safety of our environment by compatibility testing using simple malicious code.
Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this pote ntial is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This paper is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this paper, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area.
Recommender Systems are especially challenging for marketplaces since they must maximize user satisfaction while maintaining the healthiness and fairness of such ecosystems. In this context, we observed a lack of resources to design, train, and evalu ate agents that learn by interacting within these environments. For this matter, we propose MARS-Gym, an open-source framework to empower researchers and engineers to quickly build and evaluate Reinforcement Learning agents for recommendations in marketplaces. MARS-Gym addresses the whole development pipeline: data processing, model design and optimization, and multi-sided evaluation. We also provide the implementation of a diverse set of baseline agents, with a metrics-driven analysis of them in the Trivago marketplace dataset, to illustrate how to conduct a holistic assessment using the available metrics of recommendation, off-policy estimation, and fairness. With MARS-Gym, we expect to bridge the gap between academic research and production systems, as well as to facilitate the design of new algorithms and applications.
While deep reinforcement learning (RL) promises freedom from hand-labeled data, great successes, especially for Embodied AI, require significant work to create supervision via carefully shaped rewards. Indeed, without shaped rewards, i.e., with only terminal rewards, present-day Embodied AI results degrade significantly across Embodied AI problems from single-agent Habitat-based PointGoal Navigation (SPL drops from 55 to 0) and two-agent AI2-THOR-based Furniture Moving (success drops from 58% to 1%) to three-agent Google Football-based 3 vs. 1 with Keeper (game score drops from 0.6 to 0.1). As training from shaped rewards doesnt scale to more realistic tasks, the community needs to improve the success of training with terminal rewards. For this we propose GridToPix: 1) train agents with terminal rewards in gridworlds that generically mirror Embodied AI environments, i.e., they are independent of the task; 2) distill the learned policy into agents that reside in complex visual worlds. Despite learning from only terminal rewards with identical models and RL algorithms, GridToPix significantly improves results across tasks: from PointGoal Navigation (SPL improves from 0 to 64) and Furniture Moving (success improves from 1% to 25%) to football gameplay (game score improves from 0.1 to 0.6). GridToPix even helps to improve the results of shaped reward training.
It has been challenging for the technical and regulatory communities to formulate requirements for trustworthiness of the cyber-physical systems (CPS) due to the complexity of the issues associated with their design, deployment, and operations. The U S National Institute of Standards and Technology (NIST), through a public working group, has released a CPS Framework that adopts a broad and integrated view of CPS and positions trustworthiness among other aspects of CPS. This paper takes the model created by the CPS Framework and its further developments one step further, by applying ontological approaches and reasoning techniques in order to achieve greater understanding of CPS. The example analyzed in the paper demonstrates the enrichment of the original CPS model obtained through ontology and reasoning and its ability to deliver additional insights to the developers and operators of CPS.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا