ترغب بنشر مسار تعليمي؟ اضغط هنا

On unified framework for nonlinear grey system models: an integro-differential equation perspective

134   0   0.0 ( 0 )
 نشر من قبل Lu Yang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear grey system models, serving to time series forecasting, are extensively used in diverse areas of science and engineering. However, most research concerns improving classical models and developing novel models, relatively limited attention has been paid to the relationship among diverse models and the modelling mechanism. The current paper proposes a unified framework and reconstructs the unified model from an integro-differential equation perspective. First, we propose a methodological framework that subsumes various nonlinear grey system models as special cases, providing a cumulative sum series-orientated modelling paradigm. Then, by introducing an integral operator, the unified model is reduced to an equivalent integro-differential equation; on this basis, the structural parameters and initial value are estimated simultaneously via the integral matching approach. The modelling procedure comparison further indicates that the integral matching-based integro-differential equation provides a direct modelling paradigm. Next, large-scale Monte Carlo simulations are conducted to compare the finite sample performance, and the results show that the reduced model has higher accuracy and robustness to noise. Applications of forecasting the municipal sewage discharge and water consumption in the Yangtze River Delta of China further illustrate the effectiveness of the reconstructed nonlinear grey models.



قيم البحث

اقرأ أيضاً

127 - Baolei Wei , Naiming Xie 2020
Since most of the research about grey forecasting models is focused on developing novel models and improving accuracy, relatively limited attention has been paid to the modelling mechanism and relationships among diverse kinds of models. This paper a ims to unify and reconstruct continuous-time grey models, highlighting the differences and similarities among different models. First, the unified form of grey models is proposed and simplified into a reduced-order ordinary differential equation. Then, the integral matching that consists of integral transformation and least squares, is proposed to estimate the structural parameter and initial value simultaneously. The cumulative sum operator, an essential element in grey modelling, proves to be the discrete approximation of the integral transformation formula. Next, grey models are reconstructed by the integral matching-based ordinary differential equations. Finally, the existing grey models are compared with the reconstructed models through extensive simulation studies, and a real-world example shows how to apply and further verify the reconstructed model.
102 - Wanli Xie , Wen-Ze Wu , Chong Liu 2021
As an essential characteristics of fractional calculus, the memory effect is served as one of key factors to deal with diverse practical issues, thus has been received extensive attention since it was born. By combining the fractional derivative with memory effects and grey modeling theory, this paper aims to construct an unified framework for the commonly-used fractional grey models already in place. In particular, by taking different kernel and normalization functions, this framework can deduce some other new fractional grey models. To further improve the prediction performance, the four popular intelligent algorithms are employed to determine the emerging coefficients for the UFGM(1,1) model. Two published cases are then utilized to verify the validity of the UFGM(1,1) model and explore the effects of fractional accumulation order and initial value on the prediction accuracy, respectively. Finally, this model is also applied to dealing with two real examples so as to further explain its efficacy and equally show how to use the unified framework in practical applications.
We consider Bayesian inference for stochastic differential equation mixed effects models (SDEMEMs) exemplifying tumor response to treatment and regrowth in mice. We produce an extensive study on how a SDEMEM can be fitted using both exact inference b ased on pseudo-marginal MCMC and approximate inference via Bayesian synthetic likelihoods (BSL). We investigate a two-compartments SDEMEM, these corresponding to the fractions of tumor cells killed by and survived to a treatment, respectively. Case study data considers a tumor xenography study with two treatment groups and one control, each containing 5-8 mice. Results from the case study and from simulations indicate that the SDEMEM is able to reproduce the observed growth patterns and that BSL is a robust tool for inference in SDEMEMs. Finally, we compare the fit of the SDEMEM to a similar ordinary differential equation model. Due to small sample sizes, strong prior information is needed to identify all model parameters in the SDEMEM and it cannot be determined which of the two models is the better in terms of predicting tumor growth curves. In a simulation study we find that with a sample of 17 mice per group BSL is able to identify all model parameters and distinguish treatment groups.
In this paper, the regularity results for the integro-differential operators of the fractional Laplacian type by Caffarelli and Silvestre cite{CS1} are extended to those for the integro-differential operators associated with symmetric, regularly vary ing kernels at zero. In particular, we obtain the uniform Harnack inequality and Holder estimate of viscosity solutions to the nonlinear integro-differential equations associated with the kernels $K_{sigma, beta}$ satisfying $$ K_{sigma,beta}(y)asymp frac{ 2-sigma}{|y|^{n+sigma}}left( logfrac{2}{|y|^2}right)^{beta(2-sigma)}quad mbox{near zero} $$ with respect to $sigmain(0,2)$ close to $2$ (for a given $betainmathbb R$), where the regularity estimates do not blow up as the order $ sigmain(0,2)$ tends to $2.$
Integro-difference equation (IDE) models describe the conditional dependence between the spatial process at a future time point and the process at the present time point through an integral operator. Nonlinearity or temporal dependence in the dynamic s is often captured by allowing the operator parameters to vary temporally, or by re-fitting a model with a temporally-invariant linear operator in a sliding window. Both procedures tend to be excellent for prediction purposes over small time horizons, but are generally time-consuming and, crucially, do not provide a global prior model for the temporally-varying dynamics that is realistic. Here, we tackle these two issues by using a deep convolution neural network (CNN) in a hierarchical statistical IDE framework, where the CNN is designed to extract process dynamics from the process most recent behaviour. Once the CNN is fitted, probabilistic forecasting can be done extremely quickly online using an ensemble Kalman filter with no requirement for repeated parameter estimation. We conduct an experiment where we train the model using 13 years of daily sea-surface temperature data in the North Atlantic Ocean. Forecasts are seen to be accurate and calibrated. A key advantage of our approach is that the CNN provides a global prior model for the dynamics that is realistic, interpretable, and computationally efficient. We show the versatility of the approach by successfully producing 10-minute nowcasts of weather radar reflectivities in Sydney using the same model that was trained on daily sea-surface temperature data in the North Atlantic Ocean.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا