Visualizing regional-scale landslides is the key to conveying the threat of natural hazards to stakeholders and policymakers. Traditional visualization techniques are restricted to post-processing a limited subset of simulation data and are not scalable to rendering exascale models with billions of particles. In-situ visualization is a technique of rendering simulation data in real-time, i.e., rendering visuals in tandem while the simulation is running. In this study, we develop a scalable N:M interface architecture to visualize regional-scale landslides. We demonstrate the scalability of the architecture by simulating the long runout of the 2014 Oso landslide using the Material Point Method coupled with the Galaxy ray tracing engine rendering 4.2 million material points as spheres. In-situ visualization has an amortized runtime increase of 2% compared to non-visualized simulations. The developed approach can achieve in-situ visualization of regional-scale landslides with billions of particles with minimal impact on the simulation process.