ﻻ يوجد ملخص باللغة العربية
FPGAs are increasingly common in modern applications, and cloud providers now support on-demand FPGA acceleration in data centers. Applications in data centers run on virtual infrastructure, where consolidation, multi-tenancy, and workload migration enable economies of scale that are fundamental to the providers business. However, a general strategy for virtualizing FPGAs has yet to emerge. While manufacturers struggle with hardware-based approaches, we propose a compiler/runtime-based solution called Synergy. We show a compiler transformation for Verilog programs that produces code able to yield control to software at sub-clock-tick granularity according to the semantics of the original program. Synergy uses this property to efficiently support core virtualization primitives: suspend and resume, program migration, and spatial/temporal multiplexing, on hardware which is available today. We use Synergy to virtualize FPGA workloads across a cluster of Altera SoCs and Xilinx FPGAs on Amazon F1. The workloads require no modification, run within 3-4x of unvirtualized performance, and incur a modest increase in FPGA fabric utilization.
The implementation of Molecular Dynamics (MD) on FPGAs has received substantial attention. Previous work, however, has consisted of either proof-of-concept implementations of components, usually the range-limited force; full systems, but with much of
FPGA-based hardware accelerators for convolutional neural networks (CNNs) have obtained great attentions due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU coun
OpenCL for FPGA enables developers to design FPGAs using a programming model similar for processors. Recent works have shown that code optimization at the OpenCL level is important to achieve high computational efficiency. However, existing works eit
As a promising solution to boost the performance of distance-related algorithms (e.g., K-means and KNN), FPGA-based acceleration attracts lots of attention, but also comes with numerous challenges. In this work, we propose AccD, a compiler-based fram
For IoT to reach its full potential, the sharing and reuse of information in different applications and across verticals is of paramount importance. However, there are a plethora of IoT platforms using different representations, protocols and interac