Normal Forms of second order Ordinary Differential Equations $y_{xx}=J(x,y,y_{x})$ under Fibre-Preserving Maps


الملخص بالإنكليزية

We study the equivalence problem of classifying second order ordinary differential equations $y_{xx}=J(x,y,y_{x})$ modulo fibre-preserving point transformations $xlongmapsto varphi(x)$, $ylongmapsto psi(x,y)$ by using Mosers method of normal forms. We first compute a basis of the Lie algebra ${frak{g}}_{{{y_{xx}=0}}}$ of fibre-preserving symmetries of $y_{xx}=0$. In the formal theory of Mosers method, this Lie algebra is used to give an explicit description of the set of normal forms $mathcal{N}$, and we show that the set is an ideal in the space of formal power series. We then show the existence of the normal forms by studying flows of suitable vector fields with appropriate corrections by the Cauchy-Kovalevskaya theorem. As an application, we show how normal forms can be used to prove that the identical vanishing of Hsu-Kamran primary invariants directly imply that the second order differential equation is fibre-preserving point equivalent to $y_{xx}=0$.

تحميل البحث