ﻻ يوجد ملخص باللغة العربية
Fluctuation theorems allow one to make generalised statements about the behaviour of thermodynamic quantities in systems that are driven far from thermal equilibrium. In this article we apply Crooks fluctuation theorem to understand the entropy production of a continuously measured, zero-temperature quantum system; namely an optical cavity measured via homodyne detection. Our analysis shows that the entropy production can be well defined at zero temperature by considering entropy in the measurement record. We link this result to the Cramer-Rao inequality and show that the product of the Fisher information in the work distribution with the entropy production is bounded below by the square of the inverse energy fluctuations. This inequality indicates that there is a minimal amount of entropy production that is paid to acquire information about the work done to a quantum system driven far from equilibrium.
We consider a free charged particle interacting with an electromagnetic bath at zero temperature. The dipole approximation is used to treat the bath wavelengths larger than the width of the particle wave packet. The effect of these wavelengths is des
Quantifying the degree of irreversibility of an open system dynamics represents a problem of both fundamental and applied relevance. Even though a well-known framework exists for thermal baths, the results give diverging results in the limit of zero
We develop a martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponen
According to the first and second laws of thermodynamics and the definitions of work and heat, microscopic expressions for the non-equilibrium entropy production have been achieved. Recently, a redefinition of heat has been presented in [href{Nature
The compressibility, zero sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The co