ﻻ يوجد ملخص باللغة العربية
A bounded linear operator $ A$ on a Hilbert space $ mathcal H $ is said to be an $ EP $ (hypo-$ EP $) operator if ranges of $ A $ and $ A^* $ are equal (range of $ A $ is contained in range of $ A^* $) and $ A $ has a closed range. In this paper, we define $EP$ and hypo-$EP$ operators for densely defined closed linear operators on Hilbert spaces and extend results from bounded operator settings to (possibly unbounded) closed operator settings.
In this paper, we investigate the perturbation for the Moore-Penrose inverse of closed operators on Hilbert spaces. By virtue of a new inner product defined on $H$, we give the expression of the Moore-Penrose inverse $bar{T}^dag$ and the upper bounds
We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.
Fuglede-Putnam theorem is not true in general for $ EP $ operators on Hilbert spaces. We prove that under some conditions the theorem holds good. If the adjoint operation is replaced by Moore-Penrose inverse in the theorem, we get Fuglede-Putnam type
A notion of resolvent set for an operator acting in a rigged Hilbert space $D subset Hsubset D^times$ is proposed. This set depends on a family of intermediate locally convex spaces living between $D$ and $D^times$, called interspaces. Some propertie
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u