Second order McKean-Vlasov SDEs and kinetic Fokker-Planck-Kolmogorov equations


الملخص بالإنكليزية

In this paper we study second order stochastic differential equations with measurable and density-distribution dependent coefficients. Through establishing a maximum principle for kinetic Fokker-Planck-Kolmogorov equations with distribution-valued inhomogeneous term, we show the existence of weak solutions under mild assumptions. Moreover, by using the Holder regularity estimate obtained recently in cite{GIMV19}, we also show the well-posedness of generalized martingale problems when diffusion coefficients only depend on the position variable (not necessarily continuous). Even in the non density-distribution dependent case, it seems that this is the first result about the well-posedness of SDEs with measurable diffusion coefficients.

تحميل البحث