ﻻ يوجد ملخص باللغة العربية
Let $G$ be a reductive group, and let $X$ be an algebraic curve over an algebraically closed field $k$ with positive characteristic. We prove a version of nonabelian Hodge correspondence for $G$-local systems over $X$ and $G$-Higgs bundles over the Frobenius twist $X$ with first order poles. To obtain a general statement of the correspondence, we introduce the language of parahoric group schemes to establish the correspondence.
Let $pi_1(C)$ be the algebraic fundamental group of a smooth connected affine curve, defined over an algebraically closed field of characteristic $p>0$ of countable cardinality. Let $N$ be a normal (resp. characteristic) subgroup of $pi_1(C)$. Under
We study a pair of Calabi-Yau threefolds X and M, fibered in non-principally polarized Abelian surfaces and their duals, and an equivalence D^b(X) = D^b(M), building on work of Gross, Popescu, Bak, and Schnell. Over the complex numbers, X is simply c
We start with a curve over an algebraically closed ground field of positive characteristic $p>0$. By using specialization techniques, under suitable natural coprimality conditions, we prove a cohomological Simpson Correspondence between the moduli sp
We study Lie algebroids in positive characteristic and moduli spaces of their modules. In particular, we show a Langtons type theorem for the corresponding moduli spaces. We relate Langtons construction to Simpsons construction of gr-semistable Griff
This paper extends the nonabelian Hodge correspondence for Kaehler manifolds to a larger class of hermitian metrics on complex manifolds called balanced of Hodge-Riemann type. Essentially, it grows out of a few key observations so that the known resu