ﻻ يوجد ملخص باللغة العربية
The interaction between quantum light and matter is being intensively studied for systems that are enclosed in high-$Q$ cavities which strongly enhance the light-matter coupling. However, for many applications, cavities with lower $Q$-factors are preferred due to the increased spectral width of the cavity mode. Here, we investigate the interaction between quantum light and matter represented by a $Lambda$-type three-level system in lossy cavities, assuming that cavity losses are the dominant loss mechanism. We demonstrate that cavity losses lead to non-trivial steady states of the electronic occupations that can be controlled by the loss rate and the initial statistics of the quantum fields. The mechanism of formation of such steady states can be understood on the basis of the equations of motion. Analytical expressions for steady states and their numerical simulations are presented and discussed.
In this paper, we investigate the quantum transfer for the system with three-level $Lambda$-type structure, and construct a shortcut to the adiabatic passage via picture transformation to speed up the evolution. We can design the pulses directly with
We study the correlated transport of photons through a chain of three-level emitters that are coupled chirally to a photonic mode of a waveguide. It is found that this system can transfer a classical input into a strongly correlated state of light in
This paper explores the utility of the quantum phase estimation (QPE) in calculating high-energy excited states characterized by promotions of electrons occupying inner energy shells. These states have been intensively studied over the last few decad
Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the
We consider a quantum memory scheme based on the conversion of a signal pulse into a long-lived spin coherence via stimulated off-resonant Raman process. For a storing medium consisting of alkali atoms, we have calculated the Autler-Townes resonance