ترغب بنشر مسار تعليمي؟ اضغط هنا

Steady states of $Lambda$-type three-level systems excited by quantum light in lossy cavities

59   0   0.0 ( 0 )
 نشر من قبل Hendrik Rose
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction between quantum light and matter is being intensively studied for systems that are enclosed in high-$Q$ cavities which strongly enhance the light-matter coupling. However, for many applications, cavities with lower $Q$-factors are preferred due to the increased spectral width of the cavity mode. Here, we investigate the interaction between quantum light and matter represented by a $Lambda$-type three-level system in lossy cavities, assuming that cavity losses are the dominant loss mechanism. We demonstrate that cavity losses lead to non-trivial steady states of the electronic occupations that can be controlled by the loss rate and the initial statistics of the quantum fields. The mechanism of formation of such steady states can be understood on the basis of the equations of motion. Analytical expressions for steady states and their numerical simulations are presented and discussed.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the quantum transfer for the system with three-level $Lambda$-type structure, and construct a shortcut to the adiabatic passage via picture transformation to speed up the evolution. We can design the pulses directly with out any additional couplings. Moreover, by choosing suitable control parameters, the Rabi frequencies of pulses can be expressed by the linear superpositions of Gaussian functions, which could be easily realized in experiments. Compared with the previous works using the stimulated Raman adiabatic passage, the quantum transfer can be significantly accelerated with the present scheme.
We study the correlated transport of photons through a chain of three-level emitters that are coupled chirally to a photonic mode of a waveguide. It is found that this system can transfer a classical input into a strongly correlated state of light in a unitary manner, i.e. without the necessity of nonlinear photon losses. In particular, we shows that the collective interaction with the emitter ensemble leads to the emergence of highly antibunched light with long-range correlations upon crossing a critical length of the chain. By operating close to conditions of electromagnetically induced transparency of the three-level medium, the high degree of antibunching and photon transmission can be maintained in the presence of moderate losses. These features, combined with the robustness against number fluctuations, suggest a promising mechanism for single-photon generation and may open the door to exploring correlated quantum many-body states of light.
This paper explores the utility of the quantum phase estimation (QPE) in calculating high-energy excited states characterized by promotions of electrons occupying inner energy shells. These states have been intensively studied over the last few decad es especially in supporting the experimental effort at light sources. Results obtained with the QPE are compared with various high-accuracy many-body techniques developed to describe core-level states. The feasibility of the quantum phase estimator in identifying classes of challenging shake-up states characterized by the presence of higher-order excitation effects is also discussed.
Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here, we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial $Lambda$ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. We attain a single-photon detection efficiency of $0.66 pm 0.06$ with a reset time of $sim 400$~ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.
We consider a quantum memory scheme based on the conversion of a signal pulse into a long-lived spin coherence via stimulated off-resonant Raman process. For a storing medium consisting of alkali atoms, we have calculated the Autler-Townes resonance structure created by a strong control field. By taking into account the upper hyperfine states of the D1 optical transition, we show important deviations from the predictions of the usual three-level Lambda-scheme approximation and we demonstrate an enhancement of the process for particular detunings of the control. We estimate the memory efficiency one can obtain using this configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا