ﻻ يوجد ملخص باللغة العربية
The recovering procedure of the electron-phonon interaction (EPI) functions from the additional nonlinearities of the current-voltage curve ($I-V$ curve) of point contacts associated with an excess current is considered. The approach proposed takes into account both inelastic scattering, which causes suppression of the excess current in the reabsorption of nonequilibrium phonons by electrons undergoing Andreev reflection (Andreev electrons), and elastic processes associated with the electron-phonon renormalization of the energy spectrum in a superconductor. The results obtained are systematically expounded for both the ballistic contacts, wherein the second derivatives of the $I-V$ curve in the normal state are proportional to the EPI functions, and inhomogeneous contacts (with dirty constrictions and clean banks), whose second derivatives in the normal state are either free of phonon singularities or weakly pronounced.
The experimentally observed nonlinearities of the current-voltage characteristics (CVCs) of tantalum-based point homo- and hetero- contacts in both normal and superconducting states related to electron-phonon interaction (EPI) were analyzed. It was t
The application of inhomogeneous niobium point-contacts in the superconducting stata for reconstructing the electron-phonon interaction function is considered. The method is based on the use of the nonlinearity of current-voltage curve, which is due
Lattice contribution to the electronic self-energy in complex correlated oxides is a fascinating subject that has lately stimulated lively discussions. Expectations of electron-phonon self-energy effects for simpler materials, such as Pd and Al, have
Using Ta, 2H-NbSe2 and MgB2 as an example it is shown that it is possible to reconstruct qualitatively a function of the electron-phonon interaction from point-contact spectra in a superconducting state. The limits and the restrictions of this method
When there is a deviation from the inequality $dll {{l}_{varepsilon }}$ ($d$ is the contact diameter, and ${{l}_{varepsilon }}$ is the energy relaxation length of the electrons), structural features are produced on the current-voltage characteristics