ﻻ يوجد ملخص باللغة العربية
The ESPRESSO spectrograph is a new powerful tool to detect and characterize extrasolar planets. Its design allows unprecedented radial velocity precision (down to a few tens of cm/s) and long-term thermo-mechanical stability. We present the first standalone detection of an extrasolar planet by blind radial velocity search using ESPRESSO and aim at showing the power of the instrument in characterizing planetary signals at different periodicities in long time spans. We use 41 ESPRESSO measurements of HD,22496 within a time span of 895 days with a median photon noise of 18 cm/s. A radial velocity analysis is performed to test the presence of planets in the system and to account for the stellar activity of this K5-K7 main sequence star. For benchmarking and comparison, we attempt the detection with 43 archive HARPS measurements and compare the results yielded by the two datasets. We also use four TESS sectors to search for transits. We find radial velocity variations compatible with a close-in planet with an orbital period of $P=5.09071pm0.00026$ days when simultaneously accounting for the effects of stellar activity at longer time scales ($P_{rm rot}=34.99^{+0.58}_{-0.53}$ days). We characterize the physical and orbital properties of the planet and find a minimum mass of $5.57^{+0.73}_{-0.68}$ $mathrm{M}_{oplus}$, right in the dichotomic regime between rocky and gaseous planets. Although not transiting according to TESS data, if aligned with the stellar spin axis, the absolute mass of the planet must be below 16 $mathrm{M}_{oplus}$. We find no significant evidence for additional signals with semi-amplitudes above 56 cm/s at 95% confidence. With a modest set of radial velocity measurements, ESPRESSO is capable of detecting and characterizing low-mass planets and constrain the presence of planets in the habitable zone of K-dwarfs down to the rocky-mass regime.
The Gemini Planet Imager (GPI) is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field sp
We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. We analysed 63 spectroscopic ESPRESSO observations
Abbreviated. By selecting stars with similar ages and masses, the Young Suns Exoplanet Survey (YSES) aims to detect and characterize planetary-mass companions to solar-type host stars in the Scorpius-Centaurus association. Our survey is carried out w
We present the results from the first two years of the Planet Hunters TESS citizen science project, which identifies planet candidates in the TESS data by engaging members of the general public. Over 22,000 citizen scientists from around the world vi
We present $Spitzer$ 4.5$mu$m observations of the transit of TOI-700 d, a habitable zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325-6534456). TOI-700 d has a radius of $1.144^{+0.062}_{