ترغب بنشر مسار تعليمي؟ اضغط هنا

FedKD: Communication Efficient Federated Learning via Knowledge Distillation

114   0   0.0 ( 0 )
 نشر من قبل Chuhan Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning is widely used to learn intelligent models from decentralized data. In federated learning, clients need to communicate their local model updates in each iteration of model learning. However, model updates are large in size if the model contains numerous parameters, and there usually needs many rounds of communication until model converges. Thus, the communication cost in federated learning can be quite heavy. In this paper, we propose a communication efficient federated learning method based on knowledge distillation. Instead of directly communicating the large models between clients and server, we propose an adaptive mutual distillation framework to reciprocally learn a student and a teacher model on each client, where only the student model is shared by different clients and updated collaboratively to reduce the communication cost. Both the teacher and student on each client are learned on its local data and the knowledge distilled from each other, where their distillation intensities are controlled by their prediction quality. To further reduce the communication cost, we propose a dynamic gradient approximation method based on singular value decomposition to approximate the exchanged gradients with dynamic precision. Extensive experiments on benchmark datasets in different tasks show that our approach can effectively reduce the communication cost and achieve competitive results.



قيم البحث

اقرأ أيضاً

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which c an incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Federated learning can enable remote workers to collaboratively train a shared machine learning model while allowing training data to be kept locally. In the use case of wireless mobile devices, the communication overhead is a critical bottleneck due to limited power and bandwidth. Prior work has utilized various data compression tools such as quantization and sparsification to reduce the overhead. In this paper, we propose a predictive coding based communication scheme for federated learning. The scheme has shared prediction functions among all devices and allows each worker to transmit a compressed residual vector derived from the reference. In each communication round, we select the predictor and quantizer based on the rate-distortion cost, and further reduce the redundancy with entropy coding. Extensive simulations reveal that the communication cost can be reduced up to 99% with even better learning performance when compared with other baseline methods.
Federated learning (FL) offers a solution to train a global machine learning model while still maintaining data privacy, without needing access to data stored locally at the clients. However, FL suffers performance degradation when client data distri bution is non-IID, and a longer training duration to combat this degradation may not necessarily be feasible due to communication limitations. To address this challenge, we propose a new adaptive training algorithm $texttt{AdaFL}$, which comprises two components: (i) an attention-based client selection mechanism for a fairer training scheme among the clients; and (ii) a dynamic fraction method to balance the trade-off between performance stability and communication efficiency. Experimental results show that our $texttt{AdaFL}$ algorithm outperforms the usual $texttt{FedAvg}$ algorithm, and can be incorporated to further improve various state-of-the-art FL algorithms, with respect to three aspects: model accuracy, performance stability, and communication efficiency.
Existing approaches to federated learning suffer from a communication bottleneck as well as convergence issues due to sparse client participation. In this paper we introduce a novel algorithm, called FetchSGD, to overcome these challenges. FetchSGD c ompresses model updates using a Count Sketch, and then takes advantage of the mergeability of sketches to combine model updates from many workers. A key insight in the design of FetchSGD is that, because the Count Sketch is linear, momentum and error accumulation can both be carried out within the sketch. This allows the algorithm to move momentum and error accumulation from clients to the central aggregator, overcoming the challenges of sparse client participation while still achieving high compression rates and good convergence. We prove that FetchSGD has favorable convergence guarantees, and we demonstrate its empirical effectiveness by training two residual networks and a transformer model.
Federated learning facilitates learning across clients without transferring local data on these clients to a central server. Despite the success of the federated learning method, it remains to improve further w.r.t communicating the most critical inf ormation to update a model under limited communication conditions, which can benefit this learning scheme into a wide range of application scenarios. In this work, we propose a nonlinear quantization for compressed stochastic gradient descent, which can be easily utilized in federated learning. Based on the proposed quantization, our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process to a large extent. Extensive experiments are conducted on image classification and brain tumor semantic segmentation using the MNIST, CIFAR-10 and BraTS datasets where we show state-of-the-art effectiveness and impressive communication efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا