ﻻ يوجد ملخص باللغة العربية
Federated learning is widely used to learn intelligent models from decentralized data. In federated learning, clients need to communicate their local model updates in each iteration of model learning. However, model updates are large in size if the model contains numerous parameters, and there usually needs many rounds of communication until model converges. Thus, the communication cost in federated learning can be quite heavy. In this paper, we propose a communication efficient federated learning method based on knowledge distillation. Instead of directly communicating the large models between clients and server, we propose an adaptive mutual distillation framework to reciprocally learn a student and a teacher model on each client, where only the student model is shared by different clients and updated collaboratively to reduce the communication cost. Both the teacher and student on each client are learned on its local data and the knowledge distilled from each other, where their distillation intensities are controlled by their prediction quality. To further reduce the communication cost, we propose a dynamic gradient approximation method based on singular value decomposition to approximate the exchanged gradients with dynamic precision. Extensive experiments on benchmark datasets in different tasks show that our approach can effectively reduce the communication cost and achieve competitive results.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which c
Federated learning can enable remote workers to collaboratively train a shared machine learning model while allowing training data to be kept locally. In the use case of wireless mobile devices, the communication overhead is a critical bottleneck due
Federated learning (FL) offers a solution to train a global machine learning model while still maintaining data privacy, without needing access to data stored locally at the clients. However, FL suffers performance degradation when client data distri
Existing approaches to federated learning suffer from a communication bottleneck as well as convergence issues due to sparse client participation. In this paper we introduce a novel algorithm, called FetchSGD, to overcome these challenges. FetchSGD c
Federated learning facilitates learning across clients without transferring local data on these clients to a central server. Despite the success of the federated learning method, it remains to improve further w.r.t communicating the most critical inf