ﻻ يوجد ملخص باللغة العربية
Physics-informed neural network (PINN) is a data-driven approach to solve equations. It is successful in many applications; however, the accuracy of the PINN is not satisfactory when it is used to solve multiscale equations. Homogenization is a way of approximating a multiscale equation by a homogenized equation without multiscale property; it includes solving cell problems and the homogenized equation. The cell problems are periodic; and we propose an oversampling strategy which greatly improves the PINN accuracy on periodic problems. The homogenized equation has constant or slow dependency coefficient and can also be solved by PINN accurately. We hence proposed a 3-step method to improve the PINN accuracy for solving multiscale problems with the help of the homogenization. We apply our method to solve three equations which represent three different homogenization. The results show that the proposed method greatly improves the PINN accuracy. Besides, we also find that the PINN aided homogenization may achieve better accuracy than the numerical methods driven homogenization; PINN hence is a potential alternative to implementing the homogenization.
We introduce the concept of a Graph-Informed Neural Network (GINN), a hybrid approach combining deep learning with probabilistic graphical models (PGMs) that acts as a surrogate for physics-based representations of multiscale and multiphysics systems
Physics Informed Neural Network (PINN) is a scientific computing framework used to solve both forward and inverse problems modeled by Partial Differential Equations (PDEs). This paper introduces IDRLnet, a Python toolbox for modeling and solving prob
Motivated by recent research on Physics-Informed Neural Networks (PINNs), we make the first attempt to introduce the PINNs for numerical simulation of the elliptic Partial Differential Equations (PDEs) on 3D manifolds. PINNs are one of the deep learn
In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-k
Deep learning-based surrogate modeling is becoming a promising approach for learning and simulating dynamical systems. Deep-learning methods, however, find very challenging learning stiff dynamics. In this paper, we develop DAE-PINN, the first effect