ترغب بنشر مسار تعليمي؟ اضغط هنا

Bright mid-infrared photoluminescence from high dislocation density epitaxial PbSe films on GaAs

115   0   0.0 ( 0 )
 نشر من قبل Kunal Mukherjee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on photoluminescence in the 3-7 $mu$m mid-wave infrared (MWIR) range from sub-100 nm strained thin films of rocksalt PbSe(001) grown on GaAs(001) substrates by molecular beam epitaxy. These bare films, grown epitaxially at temperatures below 400 {deg}C, luminesce brightly at room temperature and have minority carrier lifetimes as long as 172 ns. The relatively long lifetimes in PbSe thin films are achievable despite threading dislocation densities exceeding $10^9$ $cm^{-2}$ arising from island growth on the nearly 8% lattice- and crystal-structure-mismatched GaAs substrate. Using quasi-continuous-wave and time-resolved photoluminescence, we show Shockley-Read-Hall recombination is slow in our high dislocation density PbSe films at room temperature, a hallmark of defect tolerance. Power-dependent photoluminescence and high injection excess carrier lifetimes at room temperature suggest that degenerate Auger recombination limits the efficiency of our films, though the Auger recombination rates are significantly lower than equivalent, III-V bulk materials and even a bit slower than expectations for bulk PbSe. Consequently, the combined effects of defect tolerance and low Auger recombination rates yield an estimated peak internal quantum efficiency of roughly 30% at room temperature, unparalleled in the MWIR for a severely lattice-mismatched thin film. We anticipate substantial opportunities for improving performance by optimizing crystal growth as well as understanding Auger processes in thin films. These results highlight the unique opportunity to harness the unusual chemical bonding in PbSe and related IV-VI semiconductors for heterogeneously integrated mid-infrared light sources constrained by tight thermal budgets in new device designs.



قيم البحث

اقرأ أيضاً

121 - N. Zhao , A. Sud , H. Sukegawa 2020
We report current-induced spin torques in epitaxial NiMnSb films on a commercially available epi-ready GaAs substrate. The NiMnSb was grown by co-sputtering from three targets using optimised parameter. The films were processed into micro-scale bars to perform current-induced spin-torque measurements. Magnetic dynamics were excited by microwave currents and electric voltages along the bars were measured to analyse the symmetry of the current-induced torques. We found that the extracted symmetry of the spin torques matches those expected from spin-orbit interaction in a tetragonally distorted half-Heusler crystal. Both field-like and damping-like torques are observed in all the samples characterised, and the efficiency of the current-induced torques is comparable to that of ferromagnetic metal/heavy metal bilayers.
We report on the formation of the dilute $Pd_{1-x}Fe_x$ compositions with tunable magnetic properties under an ion-beam implantation of epitaxial Pd thin films. Binary $Pd_{1-x}Fe_x$ alloys with a mean iron content $x$ of $0.025$, $0.035$ or $0.075$ were obtained by the implantation of $40 keV$ $Fe^+$ ions into the palladium films on MgO (001) substrate to the doses of $0.5cdot10^{16}, 1.0cdot10^{16}$ and $3.0cdot10^{16}$ $ions/cm^2$, respectively. Structural and magnetic studies have shown that iron atoms occupy regular fcc-lattice Pd-sites without the formation of any secondary crystallographic phase. All the iron implanted Pd films reveal ferromagnetism at low temperatures (below $200 K$) with both the Curie temperature and saturation magnetization determined by the implanted iron dose. In contrast to the magnetic properties of the molecular beam epitaxy grown $Pd_{1-x}Fe_x$ alloy films with the similar iron contents, the Fe-implanted Pd films possess weaker in-plane magnetocrystalline anisotropy, and, accordingly, a lower coercivity. The observed multiple ferromagnetic resonances in the implanted $Pd_{1-x}Fe_x$ films indicate a formation of a magnetically inhomogeneous state due to spinodal decomposition into regions, presumably layers, with identical crystal symmetry but different iron contents. The multiphase magnetic structure is robust with respect to the vacuum annealing at $770 K$, though develops towards well-defined local $Pd-Fe$ compositions.
The epitaxy of MoO2 on c_plane sapphire substrates is examined. A theoretical approach, based on density functional theory calculations of the strain energy, allowed to predict the preferred layer/substrate epitaxial relationships. To test the result s of these calculations, MoO2/(001) Al2O3 heterostructures were grown using the chemically_driven isothermal close space vapour transport technique. At the early stages of the growth, two kinds of morphologies were obtained, using the same growth parameters: lying and standing flakes. The composition and morphology, as well as the layer/substrate epitaxial relationships were determined for both kind of morphologies. Experimental epitaxial relationships coincide with those predicted by DFT calculation as the most favourable ones in terms of strain energy. For thicker films, the standing flakes evolve to form an epitaxial porous layer composed by coalesced epitaxial flakes. The interfacial strain between the sapphire substrate and MoO2 enables a self_organization from nanometer to micron scales between separated or coalesced flakes, depending on deposition condition.
In this work, we use photoluminescence spectroscopy (PL) to monitor changes in the UV, UV, blue, and green emission bands from n-type (010) Ga2O3 films grown by metalorganic vapor phase epitaxy (MOVPE) induced by annealing at different temperatures u nder O2 ambient. Annealing at successively higher temperatures decreases the overall PL yield and UV intensity at nearly the same rates, indicating the increase in formation of at least one non-radiative defect type. Simultaneously, the PL yield ratios of blue/UV and green/UV increase, suggesting that defects associated with these emissions increase in concentration with O2 annealing. Utilizing the different absorption coefficients of 240 and 266 nm polarization-dependent excitation, we find an overall activation energy for the generation of non-radiative defects of 0.69 eV in the bulk but 1.55 eV near the surface. We also deduce activation energies for the green emission-related defects of 0.60 eV near the surface and 0.89-0.92 eV through the films, whereas the blue-related defects have activation energy in the range 0.43-0.62 eV for all depths. Lastly, we observe hillock surface morphologies and Cr diffusion from the substrate into the film for temperatures above 1050 oC. These observations are consistent with the formation and diffusion of VGa and its complexes as a dominant process during O2 annealing, but further work will be necessary to determine which defects and complexes provide radiative and non-radiative recombination channels and the detailed kinetic processes occurring at surfaces and in bulk amongst defect populations.
We present measurements of the electrical resistivity, $rho$, in epitaxial Cr films of different thicknesses grown on MgO (100) substrates, as a function of temperature, $T$. The $rho(T)$ curves display hysteretic behavior in certain temperature rang e, which is film thickness dependent. The hysteresis are related to the confinement of quantized incommensurate spin density waves (ISDW) in the film thickness. Our important finding is to experimentally show that the temperature $T_{mid}$ where the ISDW changes from $N$ to $N$,+,1 nodes {it decreases} as the film thickness {it increases}. Identifying $T_{mid}$ with a first order transition between ISDW states with $N$ and $N$,+,1 nodes, and using a Landau approach to the free energy of the ISDW together with Monte Carlo simulations, we show that the system at high temperatures explores all available modes for the ISDW, freezing out in one particular mode at a transition temperature that indeed decreases with film thickness, $L$. The detailed dependence of $T_{mid}(L)$ seems to depend rather strongly on the boundary conditions at the Cr film interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا