ترغب بنشر مسار تعليمي؟ اضغط هنا

Compound twin beams without the need of genuine photon-number-resolving detection

62   0   0.0 ( 0 )
 نشر من قبل Jan Perina Jr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The scheme for building stronger multi-mode twin beams from a greater number of identical twin beams sufficiently weak so that single-photon sensitive on/off detectors suffice in their detection is studied. Statistical properties of these compound twin beams involving the non-classicality are analyzed for intensities up to hundreds of photon pairs. Their properties are compared with those of the genuine twin beams that require photon-number-resolving detectors in their experimental investigations. The use of such compound twin beams for the generation of sub-Poissonian light and measurement of absorption with sub-shot-noise precision is analyzed. A suitable theoretical model for the compound twin beams is developed to interpret the experimental data.



قيم البحث

اقرأ أيضاً

A nonclassical light source is used to demonstrate experimentally the absolute efficiency calibration of a photon-number-resolving detector. The photon-pair detector calibration method developed by Klyshko for single-photon detectors is generalized t o take advantage of the higher dynamic range and additional information provided by photon-number-resolving detectors. This enables the use of brighter twin-beam sources including amplified pulse pumped sources, which increases the relevant signal and provides measurement redundancy, making the calibration more robust.
133 - Daryl Achilles 2003
Detectors that can resolve photon number are needed in many quantum information technologies. In order to be useful in quantum information processing, such detectors should be simple, easy to use, and be scalable to resolve any number of photons, as the application may require great portability such as in quantum cryptography. Here we describe the construction of a time-multiplexed detector, which uses a pair of standard avalanche photodiodes operated in Geiger mode. The detection technique is analysed theoretically and tested experimentally using a pulsed source of weak coherent light.
We present a technique that improves the signal-to-noise-ratio (SNR) of range-finding, sensing, and other light-detection applications. The technique filters out low photon numbers using photon-number-resolving detectors (PNRDs). This technique has n o classical analog and cannot be done with classical detectors. We investigate the properties of our technique and show under what conditions the scheme surpasses the classical SNR. Finally, we simulate the operation of a rangefinder, showing improvement with a low number of signal samplings and confirming the theory with a high number of signal samplings.
We present a method of directly obtaining the parity of a Gaussian state of light without recourse to photon-number counting. The scheme uses only a simple balanced homodyne technique, and intensity correlation. Thus interferometric schemes utilizing coherent or squeezed light, and parity detection may be practically implemented for an arbitrary photon flux. Specifically we investigate a two-mode, squeezed-light, Mach-Zehnder interferometer and show how the parity of the output state may be obtained. We also show that the detection may be described independent of the parity operator, and that this parity-by-proxy measurement has the same signal as traditional parity.
Joint signal-idler photoelectron distributions of twin beams containing several tens of photons per mode have been measured recently. Exploiting a microscopic quantum theory for joint quasi-distributions in parametric down-conversion developed earlie r we characterize properties of twin beams in terms of quasi-distributions using experimental data. Negative values as well as oscillating behaviour in quantum region are characteristic for the subsequently determined joint signal-idler quasi-distributions of integrated intensities. Also the conditional and difference photon-number distributions are shown to be sub-Poissonian and sub-shot-noise, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا