ترغب بنشر مسار تعليمي؟ اضغط هنا

GASP XXXV: Characteristics of the diffuse ionised gas in gas-stripped galaxies

74   0   0.0 ( 0 )
 نشر من قبل Neven Tomicic
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The diffuse ionized gas (DIG) is an important component of the interstellar medium that can provide insights into the different physical processes affecting the gas in galaxies. We utilise optical IFU observations of 71 gas-stripped and control galaxies from the Gas Stripping Phenomena in galaxies (GASP) survey, to analyze the gas properties of the dense ionized gas and the DIG, such as metallicity, ionization parameter log(q), and the difference between the measured $log[OI]/Halpha$ and the value predicted by star-forming models, given the measured log[OIII]/H$beta$ ($Delta log[OI]/Halpha$). We compare these properties at different spatial scales, among galaxies at different gas-stripping stages, and between disks and tails of the stripped galaxies. The metallicity is similar between the dense gas and DIG at a given galactocentric radius. The log(q) is lower for DIG compared to dense gas. The median values of log(q) correlate best with stellar mass, and the most massive galaxies show an increase in log(q) toward their galactic centers. The DIG clearly shows higher $Delta log[OI]/Halpha$ values compared to the dense gas, with much of the spaxels having LIER/LINER like emission. The DIG regions in the tails of highly stripped galaxies show the highest $Delta log[OI]/Halpha$, exhibit high values of log(q) and extend to large projected distances from star-forming areas (up to 10 kpc). We conclude that the DIG in the tails is at least partly ionized by a process other than star-formation, probably by mixing, shocks and accretion of inter-cluster and interstellar medium gas.



قيم البحث

اقرأ أيضاً

The diffuse ionized gas (DIG) is an important component of the interstellar medium and it can be affected by many physical processes in galaxies. Measuring its distribution and contribution in emission allows us to properly study both its ionization and star formation in galaxies. Here, we measure for the first time the DIG emission in 38 gas-stripped galaxies in local clusters drawn from the GAs Stripping Phenomena in galaxies with MUSE survey (GASP). These galaxies are at different stages of stripping. We also compare the DIG properties to those of 33 normal galaxies from the same survey. To estimate the DIG fraction (C$_{DIG}$) and derive its maps, we combine attenuation corrected H$alpha$ surface brightness with $rm [SII]/Halpha$ line ratio. Our results indicate that we cannot use neither a single H$alpha$ or $rm [SII]/Halpha$ value, nor a threshold in equivalent width of H$alpha$ emission line to separate spaxels dominated by DIG and non-DIG emission. Assuming a constant surface brightness of the DIG across galaxies underestimates C$_{DIG}$. Contrasting stripped and non-stripped galaxies, we find no clear differences in C$_{DIG}$. The DIG emission contributes between 20% and 90% of the total integrated flux, and does not correlate with the galactic stellar mass and star-formation rate (SFR). The C$_{DIG}$ anti-correlates with the specific SFR, which may indicate an older ($>10^8$ yr) stellar population as ionizing source of the DIG. The DIG fraction shows anti-correlations with the SFR surface density, which could be used for a robust estimation of integrated C$_{DIG}$ in galaxies.
Jellyfish galaxies in clusters are key tools to understand environmental processes at work in dense environments. The advent of Integral Field Spectroscopy has recently allowed to study a significant sample of stripped galaxies in the cluster environ ment at z$sim 0.05$, through the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey. However, optical spectroscopy can only trace the ionized gas component through the H$_{alpha}$ emission that can be spatially resolved on kpc scale at this redshift. The complex interplay between the various gas phases (ionized, neutral, molecular) is however yet to be understood. We report here the detection of large amounts of molecular gas both in the tails and in the disks of 4 jellyfish galaxies from the GASP sample with stellar masses $sim 3.5times 10^{10}-3times 10^{11} M_{odot}$, showing strong stripping. The mass of molecular gas that we measure in the tails amounts to several $10^9 M_{odot}$ and the total mass of molecular gas ranges between 15 and 100 % of the galaxy stellar mass. The molecular gas content within the galaxies is compatible with the one of normal spiral galaxies, suggesting that the molecular gas in the tails has been formed in-situ. We find a clear correlation between the ionized gas emission $rm Halpha$ and the amount of molecular gas. The CO velocities measured from APEX data are not always coincident with the underlying $rm Halpha$ emitting knots, and the derived Star Formation Efficiencies appear to be very low.
The large vertical scale heights of the diffuse ionised gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three dim ensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds (SILCC) project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionising sources to get an appropriate ionising spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.
Based on MUSE data from the GASP survey, we study the Halpha-emitting extraplanar tails of 16 cluster galaxies at z~0.05 undergoing ram pressure stripping. We demonstrate that the dominating ionization mechanism of this gas (between 64% and 94% of th e Halpha emission in the tails depending on the diagnostic diagram used) is photoionization by young massive stars due to ongoing star formation (SF) taking place in the stripped tails. This SF occurs in dynamically quite cold HII clumps with a median Halpha velocity dispersion sigma = 27 km s^-1. We study the characteristics of over 500 star-forming clumps in the tails and find median values of Halpha luminosity L_{Halpha} = 4 X 10^38 erg s^-1, dust extinction A_V=0.5 mag, star formation rate SFR=0.003 M_sun yr^-1, ionized gas density n_e =52 cm^-3, ionized gas mass M_gas = 4 X 10^4 Msun, and stellar mass M_{*} = 3 X 10^6 Msun. The tail clumps follow scaling relations (M_gas-M_{*}, L_{Halpha} -sigma, SFR-M_gas) similar to disk clumps, and their stellar masses are comparable to Ultra Compact Dwarfs and Globular Clusters.The diffuse gas component in the tails is ionized by a combination of SF and composite/LINER-like emission likely due to thermal conduction or turbulence. The stellar photoionization component of the diffuse gas can be due either to leakage of ionizing photons from the HII clumps with an average escape fraction of 18%, or lower luminosity HII regions that we cannot individually identify.
During pilot observations of the Virgo Environmental Survey Tracing Galaxy Evolution (VESTIGE), a blind narrow-band Halpha+[NII] imaging survey of the Virgo cluster carried out with MegaCam at the CFHT, we have observed the spiral galaxy NGC 4254 (M9 9). Deep Halpha+[NII] narrow-band and GALEX UV images revealed the presence of 60 compact (70-500 pc radius) star forming regions up to ~ 20 kpc outside the optical disc of the galaxy. These regions are located along a tail of HI gas stripped from the disc of the galaxy after a rapid gravitational encounter with another Virgo cluster member that simulations indicate occurred 280-750 Myr ago. We have combined the VESTIGE data with multifrequency data from the UV to the far-infrared to characterise the stellar populations of these regions and study the star formation process in an extreme environment such as the tails of stripped gas embedded in the hot intracluster medium. The colour, spectral energy distribution (SED), and linear size consistently indicate that these regions are coeval and have been formed after a single burst of star formation that occurred ~< 100 Myr ago. These regions might become free floating objects within the cluster potential well, and be the local analogues of compact sources produced after the interaction of gas-rich systems that occurred during the early formation of clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا