ﻻ يوجد ملخص باللغة العربية
This paper studies the problem of steering a linear time-invariant system subject to state and input constraints towards a goal location that may be inferred only through partial observations. We assume mixed-observable settings, where the systems state is fully observable and the environments state defining the goal location is only partially observed. In these settings, the planning problem is an infinite-dimensional optimization problem where the objective is to minimize the expected cost. We show how to reformulate the control problem as a finite-dimensional deterministic problem by optimizing over a trajectory tree. Leveraging this result, we demonstrate that when the environment is static, the observation model piecewise, and cost function convex, the original control problem can be reformulated as a Mixed-Integer Convex Program (MICP) that can be solved to global optimality using a branch-and-bound algorithm. The effectiveness of the proposed approach is demonstrated on navigation tasks, where the system has to reach a goal location identified from partial observations.
The behaviour of a stochastic dynamical system may be largely influenced by those low-probability, yet extreme events. To address such occurrences, this paper proposes an infinite-horizon risk-constrained Linear Quadratic Regulator (LQR) framework wi
Model-free reinforcement learning attempts to find an optimal control action for an unknown dynamical system by directly searching over the parameter space of controllers. The convergence behavior and statistical properties of these approaches are of
Many reinforcement learning methods achieve great success in practice but lack theoretical foundation. In this paper, we study the convergence analysis on the problem of the Linear Quadratic Regulator (LQR). The global linear convergence properties a
Risk-aware control, though with promise to tackle unexpected events, requires a known exact dynamical model. In this work, we propose a model-free framework to learn a risk-aware controller with a focus on the linear system. We formulate it as a disc
We introduce a new problem setting for continuous control called the LQR with Rich Observations, or RichLQR. In our setting, the environment is summarized by a low-dimensional continuous latent state with linear dynamics and quadratic costs, but the