ترغب بنشر مسار تعليمي؟ اضغط هنا

Fourier non-uniqueness sets from totally real number fields

82   0   0.0 ( 0 )
 نشر من قبل Danylo Radchenko
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $K$ be a totally real number field of degree $n geq 2$. The inverse different of $K$ gives rise to a lattice in $mathbb{R}^n$. We prove that the space of Schwartz Fourier eigenfunctions on $mathbb{R}^n$ which vanish on the component-wise square root of this lattice, is infinite dimensional. The Fourier non-uniqueness set thus obtained is a discrete subset of the union of all spheres $sqrt{m}S^{n-1}$ for integers $m geq 0$ and, as $m rightarrow infty$, there are $sim c_{K} m^{n-1}$ many points on the $m$-th sphere for some explicit constant $c_{K}$, proportional to the square root of the discriminant of $K$. This contrasts a recent Fourier uniqueness result by Stoller. Using a different construction involving the codifferent of $K$, we prove an analogue of our results for discrete subsets of ellipsoids. In special cases, these sets also lie on spheres with more densely spaced radii, but with fewer points on each. We also study a related question about existence of Fourier interpolation formulas with nodes $sqrt{Lambda}$ for general lattices $Lambda subset mathbb{R}^n$. Using results about lattices in Lie groups of higher rank, we prove that, if $n geq 2$ and if a certain group $Gamma_{Lambda} leq operatorname{PSL}_2(mathbb{R})^n$ is discrete, then such interpolation formulas cannot exist. Motivated by these more general considerations, we revisit the case of one radial variable and prove, for all $n geq 5$ and all real $lambda > 2$, Fourier interpolation results for sequences of spheres $sqrt{2 m/ lambda}S^{n-1}$, where $m$ ranges over any fixed cofinite set of non-negative integers. The proof relies on a series of Poincare type for Hecke groups of infinite covolume, similarly to the construction previously used by Stoller.



قيم البحث

اقرأ أيضاً

We employ methods from homotopy theory to define new obstructions to solutions of embedding problems. By using these novel obstructions we study embedding problems with non-solvable kernel. We apply these obstructions to study the unramified inverse Galois problem. That is, we show that our methods can be used to determine that certain groups cannot be realized as the Galois groups of unramified extensions of certain number fields. To demonstrate the power of our methods, we give an infinite family of totally imaginary quadratic number fields such that $text{Aut}(text{PSL}(2,q^2))$ for $q$ an odd prime power, cannot be realized as an unramified Galois group over $K,$ but its maximal solvable quotient can. To prove this result, we determine the ring structure of the etale cohomology ring $H^*(text{Spec }mathcal{O}_K;mathbb{Z}/ 2mathbb{Z})$ where $mathcal{O}_K$ is the ring of integers of an arbitrary totally imaginary number field $K.$
We study an analogue of Serres modularity conjecture for projective representations $overline{rho}: operatorname{Gal}(overline{K} / K) rightarrow operatorname{PGL}_2(k)$, where $K$ is a totally real number field. We prove new cases of this conjecture when $k = mathbb{F}_5$ by using the automorphy lifting theorems over CM fields established in previous work of the authors.
124 - Qun Li , Jiangwei Xue , Chia-Fu Yu 2018
We study a form of refined class number formula (resp. type number formula) for maximal orders in totally definite quaternion algebras over real quadratic fields, by taking into consideration the automorphism groups of right ideal classes (resp. unit groups of maximal orders). For each finite noncyclic group $G$, we give an explicit formula for the number of conjugacy classes of maximal orders whose unit groups modulo center are isomorphic to $G$, and write down a representative for each conjugacy class. This leads to a complete recipe (even explicit formulas in special cases) for the refined class number formula for all finite groups. As an application, we prove the existence of superspecial abelian surfaces whose endomorphism algebras coincide with $mathbb{Q}(sqrt{p})$ in all positive characteristic $p otequiv 1pmod{24}$.
It was known to von Neumann in the 1950s that the integer lattice $mathbb{Z}^2$ forms a uniqueness set for the Bargmann-Fock space. It was later demonstrated by Seip and Wallsten that a sequence of points $Gamma$ that is uniformly close to the intege r lattice is still a uniqueness set. We show in this paper that the uniqueness sets for the Fock space are preserved under much more general perturbations.
We define an integral version of Sczechs Eisenstein cocycle on GLn by smoothing at a prime ell. As a result we obtain a new proof of the integrality of the values at nonpositive integers of the smoothed partial zeta functions associated to ray class extensions of totally real fields. We also obtain a new construction of the p-adic L-functions associated to these extensions. Our cohomological construction allows for a study of the leading term of these p-adic L-functions at s=0. We apply Spiesss formalism to prove that the order of vanishing at s=0 is at least equal to the expected one, as conjectured by Gross. This result was already known from Wiles proof of the Iwasawa Main Conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا