ﻻ يوجد ملخص باللغة العربية
Let $K$ be a totally real number field of degree $n geq 2$. The inverse different of $K$ gives rise to a lattice in $mathbb{R}^n$. We prove that the space of Schwartz Fourier eigenfunctions on $mathbb{R}^n$ which vanish on the component-wise square root of this lattice, is infinite dimensional. The Fourier non-uniqueness set thus obtained is a discrete subset of the union of all spheres $sqrt{m}S^{n-1}$ for integers $m geq 0$ and, as $m rightarrow infty$, there are $sim c_{K} m^{n-1}$ many points on the $m$-th sphere for some explicit constant $c_{K}$, proportional to the square root of the discriminant of $K$. This contrasts a recent Fourier uniqueness result by Stoller. Using a different construction involving the codifferent of $K$, we prove an analogue of our results for discrete subsets of ellipsoids. In special cases, these sets also lie on spheres with more densely spaced radii, but with fewer points on each. We also study a related question about existence of Fourier interpolation formulas with nodes $sqrt{Lambda}$ for general lattices $Lambda subset mathbb{R}^n$. Using results about lattices in Lie groups of higher rank, we prove that, if $n geq 2$ and if a certain group $Gamma_{Lambda} leq operatorname{PSL}_2(mathbb{R})^n$ is discrete, then such interpolation formulas cannot exist. Motivated by these more general considerations, we revisit the case of one radial variable and prove, for all $n geq 5$ and all real $lambda > 2$, Fourier interpolation results for sequences of spheres $sqrt{2 m/ lambda}S^{n-1}$, where $m$ ranges over any fixed cofinite set of non-negative integers. The proof relies on a series of Poincare type for Hecke groups of infinite covolume, similarly to the construction previously used by Stoller.
We employ methods from homotopy theory to define new obstructions to solutions of embedding problems. By using these novel obstructions we study embedding problems with non-solvable kernel. We apply these obstructions to study the unramified inverse
We study an analogue of Serres modularity conjecture for projective representations $overline{rho}: operatorname{Gal}(overline{K} / K) rightarrow operatorname{PGL}_2(k)$, where $K$ is a totally real number field. We prove new cases of this conjecture
We study a form of refined class number formula (resp. type number formula) for maximal orders in totally definite quaternion algebras over real quadratic fields, by taking into consideration the automorphism groups of right ideal classes (resp. unit
It was known to von Neumann in the 1950s that the integer lattice $mathbb{Z}^2$ forms a uniqueness set for the Bargmann-Fock space. It was later demonstrated by Seip and Wallsten that a sequence of points $Gamma$ that is uniformly close to the intege
We define an integral version of Sczechs Eisenstein cocycle on GLn by smoothing at a prime ell. As a result we obtain a new proof of the integrality of the values at nonpositive integers of the smoothed partial zeta functions associated to ray class