ﻻ يوجد ملخص باللغة العربية
The spectrum of triatomic molecules with close rovibrational opposite parity levels is sensitive to the $mathcal{P}$,$mathcal{T}$-odd effects. This makes them a convenient platform for the experimental search of a new physics. Among the promising candidates one may distinguish the YbOH as a non-radioactive compound with a heavy atom. The energy gap between levels of opposite parity, $l$-doubling, is of a great interest as it determines the electric field strength required for the full polarization of the molecule. Likewise, the influence of the bending and stretching modes on the sensitivities to the $mathcal{P}$,$mathcal{T}$-violation requires a thorough investigation since the measurement would be performed on the excited vibrational states. This motivates us to obtain the rovibrational nuclear wavefunctions, taking into account the anharmonicity of the potential. As a result, we get the values of the $E_{rm eff}$ and $E_s$ for the lowest excited vibrational state and determine the $l$-doubling
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets. This makes it a promising candidate for experimental study of the $mathcal{P}$,$mathcal{T}$-violation. Previous studies concent
Accurate evaluation of the $mathcal{P}$,$mathcal{T}$-odd Faraday effect (rotation of the polarization plane for the light propagating through a medium in presence of an external electric field) is presented. This effect can arise only due to the $mat
Present limit on the electron electric dipole moment ($e$EDM) is based on the electron spin precession measurement. We propose an alternative approach - observation of the $mathcal{P}$,$mathcal{T}$-odd Faraday effect in an external electric field on
Nuclear magnetic quadrupole moments (MQMs), like intrinsic electric dipole moments of elementary particles, violate both parity and time-reversal symmetry and therefore probe physics beyond the Standard Model of particle physics. We report on accurat
We use an isomorphism established by Langenbruch between some sequence spaces and weighted spaces of generalized functions to give sufficient conditions for the (Beurling type) space ${mathcal S}_{(M_p)}$ to be nuclear. As a consequence, we obtain th