ﻻ يوجد ملخص باللغة العربية
We argue that randomized controlled trials (RCTs) are special even among settings where average treatment effects are identified by a nonparametric unconfoundedness assumption. This claim follows from two results of Robins and Ritov (1997): (1) with at least one continuous covariate control, no estimator of the average treatment effect exists which is uniformly consistent without further assumptions, (2) knowledge of the propensity score yields a consistent estimator and confidence intervals at parametric rates, regardless of how complicated the propensity score function is. We emphasize the latter point, and note that successfully-conducted RCTs provide knowledge of the propensity score to the researcher. We discuss modern developments in covariate adjustment for RCTs, noting that statistical models and machine learning methods can be used to improve efficiency while preserving finite sample unbiasedness. We conclude that statistical inference has the potential to be fundamentally more difficult in observational settings than it is in RCTs, even when all confounders are measured.
Covariate adjustment is an important tool in the analysis of randomized clinical trials and observational studies. It can be used to increase efficiency and thus power, and to reduce possible bias. While most statistical tests in randomized clinical
Cluster randomized controlled trials (cRCTs) are designed to evaluate interventions delivered to groups of individuals. A practical limitation of such designs is that the number of available clusters may be small, resulting in an increased risk of ba
We apply the pigeonhole principle to show that there must exist Boolean functions on 7 inputs with a multiplicative complexity of at least 7, i.e., that cannot be computed with only 6 multiplications in the Galois field with two elements.
Cluster randomized trials (CRTs) are popular in public health and in the social sciences to evaluate a new treatment or policy where the new policy is randomly allocated to clusters of units rather than individual units. CRTs often feature both nonco
Scharfstein et al. (2021) developed a sensitivity analysis model for analyzing randomized trials with repeatedly measured binary outcomes that are subject to nonmonotone missingness. Their approach becomes computationally intractable when the number