ترغب بنشر مسار تعليمي؟ اضغط هنا

Terahertz birefringent gratings for filtering and dispersion compensation

146   0   0.0 ( 0 )
 نشر من قبل Muhammad Talal Ali Khan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent development of the terahertz waveguide makes it an excellent platform for integrating many intriguing functionalities, which offers tremendous potential to build compact and robust terahertz systems. In the context of next-generation high-speed communication links at the terahertz band, engineering the dispersion and birefringence of terahertz waves is essential. Here, we experimentally demonstrate subwavelength birefringent waveguide gratings based on the low-loss cyclic olefin copolymer exploiting micro-machining fabrication techniques. Asymmetric cross-section and periodic-structural modulation along propagation direction are introduced to achieve birefringent THz grating for filtering and dispersion compensation. Because of strong index modulation in the subwavelength fiber, a high negative group velocity dispersion of -188 (-88) ps/mm/THz is achieved at 0.15 THz for x-polarization (y-polarization), i.e., 7.5 times increase compared to the state-of-the-art reported to date. Such high negative dispersion is realized in a 43 mm grating length, which is less than half of the length reported until now (e.g., 100 mm). Further, the subwavelength fiber grating filters two orthogonal polarization states and exhibits transmission dips with 8.5-dB and 7.5-dB extinction ratios for x and y polarization, respectively. Our experiment demonstrates the feasibility of using polymer-based terahertz gratings as a dispersion compensator in terahertz communications and steering polarized terahertz radiations for polarization-sensitive THz systems.



قيم البحث

اقرأ أيضاً

We demonstrate that porous fibers have low effective material loss over an extended frequency range, 4.5 times larger bandwidth than that can be achieved in sub-wavelength solid core fibers. We also show that these new fibers can be designed to have near zero dispersion for 0.5-1 THz resulting to overall less terahertz signal degradation. In addition, it is demonstrated that the use of asymmetrical sub-wavelength air-holes within the core leads to high birefringence ~0.026. This opens up the potential for realization of novel polarization preserving fibers in the terahertz regime.
Ability to selectively enhance the amplitude and maintain high coherence of the supercontinuum signal with long pulses is gaining significance. In this work an extra degree of freedom afforded by varying the dispersion profile of a waveguide is utili zed to selectively enhance supercontinuum. As much as 16 dB signal enhancement in the telecom window and 100 nm of wavelength extension is achieved with a cascaded waveguide, compared to a fixed dispersion waveguide. Waveguide tapering, in particular with increasing width, is determined to have a flatter and more coherent supercontinuum than a fixed dispersion waveguide when longer input pulses are used. Furthermore, due to the strong birefringence of an asymmetric silicon waveguide the supercontinuum signal is broadened by pumping simultaneously with both quasitransverse electric (TE) and quasi-transverse magnetic (TM) mode in the anomalous dispersion regime. Thus, by controlling the dispersion for the two modes selective signal generation is obtained. Such waveguides offer several advantages over optical fiber as the variation in dispersion can be controlled with greater flexibility in an integrated platform. This work paves the way forward for various applications in fields ranging from medicine to telecom where specific wavelength windows need to be targeted.
Emerging technology based on artificial materials containing metallic structures has raised the prospect for unprecedented control of terahertz waves through components like filters, absorbers and polarizers. The functionality of these devices is sta tic by the very nature of their metallic or polaritonic composition, although some degree of tunability can be achieved by incorporating electrically biased semiconductors. Here, we demonstrate a photonic structure by projecting the optical image of a metal mask onto a thin GaAs substrate using a femtosecond pulsed laser source. We show that the resulting high-contrast pattern of photo- excited carriers can create diffractive elements operating in transmission. With the metal mask replaced by a digital micromirror device, our photo-imprinted photonic structures provide a route to terahertz components with reconfigurable functionality.
The angular dependence of terahertz (THz) emission from birefringent crystals can differ significantly from that of cubic crystals. Here we consider optical rectification in uniaxial birefringent materials, such as chalcopyrite crystals. The analysis is verified in (110)-cut ZnGeP_2 and compared to (zincblende) GaP. Although the crystals share the same nonzero second-order tensor elements, the birefringence in chalcopyrite crystals cause the pump pulse polarization to evolve as it propagates through the crystal, resulting in a drastically different angular dependence in chalcopyrite crystals. The analysis is extended to {012}- and {114}-cut chalcopyrite crystals and predicts more efficient conversion for the {114} crystal cut over the {012}- and {110}-cuts.
81 - Karl Strecker , Sabit Ekin , 2019
We report and demonstrate for the first time a method to compensate atmospheric group velocity dispersion of terahertz pulses. In ultra-wideband or impulse radio terahertz wireless communication, the atmosphere reshapes terahertz pulses via group vel ocity dispersion, a result of the frequency-dependent refractivity of air. Without correction, this can significantly degrade the achievable data transmission rate. We present a method for compensating the atmospheric dispersion of terahertz pulses using a cohort of stratified media reflectors. Using this method, we compensated group velocity dispersion in the 0.2-0.3 THz channel under common atmospheric conditions. Based on analytic and numerical simulations, the method can exhibit an in-band power efficiency of greater than 98% and dispersion compensation up to 99% of ideal. Simulations were validated by experimental measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا