ﻻ يوجد ملخص باللغة العربية
Given a Lagrangian cobordism $L$ of Legendrian submanifolds from $Lambda_-$ to $Lambda_+$, we construct a functor $Phi_L^*: Sh^c_{Lambda_+}(M) rightarrow Sh^c_{Lambda_-}(M) otimes_{C_{-*}(Omega_*Lambda_-)} C_{-*}(Omega_*L)$ between sheaf categories of compact objects with singular support on $Lambda_pm$ and its adjoint on sheaf categories of proper objects, using Nadler-Shendes work. This gives a sheaf theory description analogous to the Lagrangian cobordism map on Legendrian contact homologies and the adjoint on their unital augmentation categories. We also deduce some long exact sequences and new obstructions to Lagrangian cobordisms between high dimensional Legendrian submanifolds.
We study a cylindrical Lagrangian cobordism group for Lagrangian torus fibres in symplectic manifolds which are the total spaces of smooth Lagrangian torus fibrations. We use ideas from family Floer theory and tropical geometry to obtain both obstruc
In this paper we introduce the following new ingredients: (1) rework on part of the Lagrangian surgery theory; (2) constructions of Lagrangian cobordisms on product symplectic manifolds; (3) extending Biran-Cornea Lagrangian cobordism theory to the i
Lagrangian cobordisms between Legendrian knots arise in Symplectic Field Theory and impose an interesting and not well-understood relation on Legendrian knots. There are some known elementary building blocks for Lagrangian cobordisms that are smoothl
The Nadler-Zaslow correspondence famously identifies the finite-dimensional Floer homology groups between Lagrangians in cotangent bundles with the finite-dimensional Hom spaces between corresponding constructible sheaves. We generalize this correspo
In this paper, we discuss Floer homology of Lagrangian submanifolds in an open symplectic manifold given as the complement of a smooth divisor. Firstly, a compactification of moduli spaces of holomorphic strips in a smooth divisor complement is intro