ﻻ يوجد ملخص باللغة العربية
We consider a bosonic two-legged ladder whose two-band energy spectrum can be tuned in the presence of a uniform gauge field, to four distinct scenarios: degenerate or non-degenerate ground states with gapped or gapless energy bands. We couple the ladder to two baths at different temperatures and chemical potentials and analyze the efficiency and power generated in the linear as well as nonlinear response regime. Our results, obtained with the Greens function method, show that the maximum performance efficiency and generated power are strongly dependent on the type of the underlying energy spectrum. We also show that the ideal scenario for efficient energy conversion, as well as power generation, corresponds to the case in which the spectrum has a gap between the bands, and the bands are narrower.
A method of determining the temperature of the nonradiative reservoir in a microcavity exciton-polariton system is developed. A general relation for the homogeneous polariton linewidth is theoretically derived and experimentally used in the method. I
We derive a Lindblad master equation that approximates the dynamics of a Lipkin-Meshkov-Glick (LMG) model weakly coupled to a bosonic bath. By studying the time evolution of operators under the adjoint master equation we prove that, for large system
At long times residual couplings to the environment become relevant even in the most isolated experiments, creating a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a c
The efficient conversion of thermal energy to mechanical work by a heat engine is an ongoing technological challenge. Since the pioneering work of Carnot, it is known that the efficiency of heat engines is bounded by a fundamental upper limit, the Ca
We consider a two leg bosonic ladder in a $U(1)$ gauge field with both interleg hopping and interleg repulsion. As a function of the flux, the interleg interaction converts the commensurate-incommensurate transition from the Meissner to a Vortex phas