ترغب بنشر مسار تعليمي؟ اضغط هنا

Driven-dissipative three-level Dicke model

74   0   0.0 ( 0 )
 نشر من قبل Jim Peter Skulte
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the three-level Dicke model, which describes a fundamental class of light-matter systems. We determine the phase diagram in the presence of dissipation, which we assume to derive from photon loss. Utilizing both analytical and numerical methods we characterize incommensurate time crystalline states in this phase diagram, as well as light-induced and light-enhanced superradiant states. As a primary application, we demonstrate that a shaken atom-cavity system is naturally approximated via a parametrically driven open three-level Dicke model.



قيم البحث

اقرأ أيضاً

A periodically driven open three-level Dicke model is realized by resonantly shaking the pump field in an atom-cavity system. As an unambiguous signature, we demonstrate the emergence of a dynamical phase, in which the atoms periodically localize bet ween the antinodes of the pump lattice, associated with an oscillating net momentum along the pump axis. We observe this dynamical phase through the periodic switching of the relative phase between the pump and cavity fields at a small fraction of the driving frequency, suggesting that it exhibits a time crystalline character.
We investigate dissipation-induced p-wave paired states of fermions in two dimensions and show the existence of spatially separated Majorana zero modes in a phase with vanishing Chern number. We construct an explicit and natural model of a dissipativ e vortex that traps a single of these modes, and establish its topological origin by mapping the problem to a chiral one-dimensional wire where we observe a non-equilibrium topological phase transition characterized by an abrupt change of a topological invariant (winding number). We show that the existence of a single Majorana zero mode in the vortex core is intimately tied to the dissipative nature of our model. Engineered dissipation opens up possibilities for experimentally realizing such states with no Hamiltonian counterpart.
234 - Shujie Cheng , Gao Xianlong 2020
For decades, the topological phenomena in quantum systems have always been catching our attention. Recently, there are many interests on the systems where topologically protected edge states exist, even in the presence of non-Hermiticity. Motivated b y these researches, the topological properties of a non-Hermitian dice model are studied in two non-Hermitian cases, viz. in the imbalanced and the balanced dissipations. Our results suggest that the topological phases are protected by the real gaps and the bulk-edge correspondence readily seen in the real edge-state spectra. Besides, we show that the principle of the bulk-edge correspondence in Hermitian case is still effective in analyzing the three-band non-Hermitian system. We find that there are topological non-trivial phases with large Chern numbers $C=-3$ robust against the dissipative perturbations.
We study the production of photons in a model of three bosonic atomic modes non-linearly coupled to a cavity mode. In absence of external driving and dissipation, the energy levels at different photon numbers assemble into the steps of an energy stai rcase which can be employed as guidance for preparing multi-photon states. We consider adiabatic photon production, driving the system through a sequence of Landau-Zener transitions in the presence of external coherent light pumping. We also analyse the non-equilibrium dynamics of the system resulting from the competition of the sudden switch of coherent photon pumping and cavity photon losses, and we find that the system approaches a plateau with a given number of photons, which becomes metastable upon increasing the rate of photon pumping. We discuss the sensitivity of the time scales for the onset of this metastable behaviour to system parameters and predict the value of photons attained, solving the driven-dissipative dynamics including three-body correlations between light and matter degrees of freedom.
We present a driven dissipative protocol for creating an optical analog of the Laughlin state in a system of Rydberg polaritons in a twisted optical cavity. We envision resonantly driving the system into a 4-polariton state by injecting photons in ca refully selected modes. The dissipative nature of the polariton-polariton interactions leads to a decay into a two-polariton analog of the Laughlin state. Generalizations of this technique could be used to explore fractional statistics and anyon based quantum information processing. We also model recent experiments that attempt to coherently drive into this same state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا