ترغب بنشر مسار تعليمي؟ اضغط هنا

Interleaved Resonance Decays and Electroweak Radiation in Vincia

74   0   0.0 ( 0 )
 نشر من قبل Rob Verheyen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a framework for high-energy interactions in which resonance decays and electroweak branching processes are interleaved with the QCD evolution in a single common sequence of decreasing resolution scales. The interleaved treatment of resonance decays allows for a new treatment of finite-width effects in parton showers. At scales above their offshellness, resonances participate explicitly as incoming and outgoing states in branching processes, while they are effectively integrated out of the description at lower scales. We implement this formalism, together with a full set of antenna functions for branching processes involving electroweak (W/Z/H) bosons in the Vincia shower module in Pythia 8.3, and study some of the consequences.



قيم البحث

اقرأ أيضاً

100 - Peter Skands , Rob Verheyen 2020
We present algorithms that interleave photon radiation from the final state and the initial state with the QCD evolution in the antenna-based Vincia parton shower. One of the algorithms incorporates the complete soft and collinear structure associate d with photon emission, but may be computationally expensive, while the other approximates the soft structure at a lower cost. Radiation from fermions and W bosons is included, and a strategy for photon radiation off leptons below the hadronization scale is set up. We show results of the application of the shower algorithms to Drell-Yan and WW production at the LHC, showing the impact of the inclusion of the full soft structure and treatment of radiation off W bosons.
We discuss and illustrate the properties of several parton-shower models available in Pythia and Vincia, in the context of Higgs production via vector boson fusion (VBF). In particular, the distinctive colour topology of VBF processes allows to defin e observables sensitive to the coherent radiation pattern of additional jets. We study a set of such observables, using the Vincia sector-antenna shower as our main reference, and contrast it to Pythias transverse-momentum-ordered DGLAP shower as well as Pythias dipole-improved shower. We then investigate the robustness of these predictions as successive levels of higher-order perturbative matrix elements are incorporated, including next-to-leading-order matched and tree-level merged calculations, using Powheg Box and Sherpa respectively to generate the hard events.
Isolated lepton momenta, in particular their directions are the most precisely measured quantities in pp collisions at LHC. This offers opportunities for multitude of precision measurements. It is of practical importance to verify if precision measur ements with lep- tons in the final state require all theoretical effects evaluated simultaneously or if QED bremsstrahlung in the final state can be separated without unwanted precision loss. Results for final state bremsstrahlung in the decays of narrow resonances are obtained from the Feynman rules of QED in an unambiguous way and can be controlled with a very high precision. Also for resonances of non-negligible width, if calculations are appropriately performed, such separation from the remaining electroweak effects can be expected. Our paper is devoted to validation that final state QED bremsstrahlung can indeed be separated from the rest of QCD and electroweak effects, in the production and decay of Z and W bosons, and to estimation of the resulting systematic error. The quantitative discussion is based on Monte Carlo programs PHOTOS and SANC, as well as on KKMC which is used for benchmark results. We show, that for a large classes of W and Z boson observables as used at LHC, theoretical error on photonic bremsstrahlung is 0.1 or 0.2%, depending on the program options used. An overall theoretical error on QED final state radiation, i.e. taking into account missing corrections due to pair emission and interference with initial state radiation is estimated respectively at 0.2% or 0.3% again depending on the program option used.
We present a first implementation of collinear electroweak radiation in the Vincia parton shower. Due to the chiral nature of the electroweak theory, explicit spin dependence in the shower algorithm is required. We thus use the spinor-helicity formal ism to compute helicity-dependent branching kernels, taking special care to deal with the gauge relics that may appear in computation that involve longitudinal polarizations of the massive electroweak vector bosons. These kernels are used to construct a shower algorithm that includes all possible collinear final-state electroweak branchings, including those induced by the Yang-Mills triple vector boson coupling and all Higgs couplings, as well as vector boson emissions from the initial state. We incorporate a treatment of features particular to the electroweak theory, such as the effects of bosonic interference and recoiler effects, as well as a preliminary description of the overlap between electroweak branchings and resonance decays. Some qualifying results on electroweak branching spectra at high energies, as well as effects on LHC physics are presented. Possible future improvements are discussed, including treatment of soft and spin effects, as well as issues unique to the electroweak sector.
Light new physics weakly coupled to the Higgs can induce a strong first-order electroweak phase transition (EWPT). Here, we argue that scenarios in which the EWPT is driven first-order by a light scalar with mass between $sim 10$ GeV - $m_h/2$ and sm all mixing with the Higgs will be conclusively probed by the high-luminosity LHC and future Higgs factories. Our arguments are based on analytic and numerical studies of the finite-temperature effective potential and provide a well-motivated target for exotic Higgs decay searches at the LHC and future lepton colliders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا