ﻻ يوجد ملخص باللغة العربية
Chronic pain is recognized as a major health problem, with impacts at the economic, social, and individual levels. Being a private and subjective experience, dependent on a complex cognitive process involving the subjects past experiences, sociocultural embeddedness, as well as emotional and psychological loads, it is impossible to externally and impartially experience, describe, and interpret chronic pain as a purely noxious stimulus that would directly point to a causal agent and facilitate its mitigation. Verbal communication is, thus, key to convey relevant information to health professionals that would otherwise not be accessible to external entities. Specifically, what a patient suffering of chronic pain describes from the experience and how this information is disclosed reveals intrinsic qualities about the patient and the experience of pain itself. We present the Reddit Reports of Chronic Pain (RRCP) dataset, which comprises social media textual descriptions and discussion of various forms of chronic pain experiences, as reported from the perspective of different base pathologies. For each pathology, we identify the main concerns emergent of its consequent experience of chronic pain, as represented by the subset of documents explicitly related to it. This is obtained via document clustering in the latent space. By means of cosine similarity, we determine which concerns of different pathologies are core to all experiences of pain, and which are exclusive to certain forms. Finally, we argue that our unsupervised semantic analysis of descriptions of chronic pain echoes clinical research on how different pathologies manifest in terms of the chronic pain experience.
Chronic pain is recognized as a major health problem, with impacts not only at the economic, but also at the social, and individual levels. Being a private and subjective experience, it is impossible to externally and impartially experience, describe
Recent advances in Natural Language Processing (NLP), and specifically automated Question Answering (QA) systems, have demonstrated both impressive linguistic fluency and a pernicious tendency to reflect social biases. In this study, we introduce Q-P
Inspired by Curriculum Learning, we propose a consecutive (i.e., image-to-text-to-text) generation framework where we divide the problem of radiology report generation into two steps. Contrary to generating the full radiology report from the image at
We describe a set of experiments for building a temporal mental health dynamics system. We utilise a pre-existing methodology for distant-supervision of mental health data mining from social media platforms and deploy the system during the global COV
Social media and online navigation bring us enjoyable experience in accessing information, and simultaneously create information cocoons (ICs) in which we are unconsciously trapped with limited and biased information. We provide a formal definition o