ﻻ يوجد ملخص باللغة العربية
The attention mechanism is blooming in computer vision nowadays. However, its application to video quality assessment (VQA) has not been reported. Evaluating the quality of in-the-wild videos is challenging due to the unknown of pristine reference and shooting distortion. This paper presents a novel underline{s}pace-underline{t}ime underline{a}ttention network founderline{r} the underline{VQA} problem, named StarVQA. StarVQA builds a Transformer by alternately concatenating the divided space-time attention. To adapt the Transformer architecture for training, StarVQA designs a vectorized regression loss by encoding the mean opinion score (MOS) to the probability vector and embedding a special vectorized label token as the learnable variable. To capture the long-range spatiotemporal dependencies of a video sequence, StarVQA encodes the space-time position information of each patch to the input of the Transformer. Various experiments are conducted on the de-facto in-the-wild video datasets, including LIVE-VQC, KoNViD-1k, LSVQ, and LSVQ-1080p. Experimental results demonstrate the superiority of the proposed StarVQA over the state-of-the-art. Code and model will be available at: https://github.com/DVL/StarVQA.
This paper is on video recognition using Transformers. Very recent attempts in this area have demonstrated promising results in terms of recognition accuracy, yet they have been also shown to induce, in many cases, significant computational overheads
A key factor in designing 3D systems is to understand how different visual cues and distortions affect the perceptual quality of 3D video. The ultimate way to assess video quality is through subjective tests. However, subjective evaluation is time co
We propose a new prototype model for no-reference video quality assessment (VQA) based on the natural statistics of space-time chips of videos. Space-time chips (ST-chips) are a new, quality-aware feature space which we define as space-time localized
We present a convolution-free approach to video classification built exclusively on self-attention over space and time. Our method, named TimeSformer, adapts the standard Transformer architecture to video by enabling spatiotemporal feature learning d
This paper describes a quality assessment model for perceptual video compression applications (PVM), which stimulates visual masking and distortion-artefact perception using an adaptive combination of noticeable distortions and blurring artefacts. Th