ﻻ يوجد ملخص باللغة العربية
Recent work has made significant progress in learning object meshes with weak supervision. Soft Rasterization methods have achieved accurate 3D reconstruction from 2D images with viewpoint supervision only. In this work, we further reduce the labeling effort by allowing such 3D reconstruction methods leverage unlabeled images. In order to obtain the viewpoints for these unlabeled images, we propose to use a Siamese network that takes two images as input and outputs whether they correspond to the same viewpoint. During training, we minimize the cross entropy loss to maximize the probability of predicting whether a pair of images belong to the same viewpoint or not. To get the viewpoint of a new image, we compare it against different viewpoints obtained from the training samples and select the viewpoint with the highest matching probability. We finally label the unlabeled images with the most confident predicted viewpoint and train a deep network that has a differentiable rasterization layer. Our experiments show that even labeling only two objects yields significant improvement in IoU for ShapeNet when leveraging unlabeled examples. Code is available at https://github.com/IssamLaradji/SSR.
We learn a self-supervised, single-view 3D reconstruction model that predicts the 3D mesh shape, texture and camera pose of a target object with a collection of 2D images and silhouettes. The proposed method does not necessitate 3D supervision, manua
3D reconstruction from a single RGB image is a challenging problem in computer vision. Previous methods are usually solely data-driven, which lead to inaccurate 3D shape recovery and limited generalization capability. In this work, we focus on object
Deep learning-based object reconstruction algorithms have shown remarkable improvements over classical methods. However, supervised learning based methods perform poorly when the training data and the test data have different distributions. Indeed, m
Convolutional networks for single-view object reconstruction have shown impressive performance and have become a popular subject of research. All existing techniques are united by the idea of having an encoder-decoder network that performs non-trivia
Recently, learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications such as Extended Reality(XR), robotics and self-driving cars. Several approaches presented good performance on reconstructing 3D