ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero Sound And Plasmon Modes For Non-Fermi Liquids

148   0   0.0 ( 0 )
 نشر من قبل Ipsita Mandal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ipsita Mandal




اسأل ChatGPT حول البحث

We derive the quantum Boltzmann equation (QBE) by using generalized Landau-interaction parameters, obtained through the nonequilibrium Greens function technique. This is a generalization of the usual QBE formalism to non-Fermi liquid (NFL) systems, which do not have well-defined quasiparticles. We apply this framework to a controlled low-energy effective field theory for the Ising-nematic quantum critical point, in order to find the collective excitations of the critical Fermi surface in the collisionless regime. We also compute the nature of the dispersion after the addition of weak Coulomb interactions. The zero angular momentum longitudinal vibrations of the Fermi surface show a linear-in-wavenumber dispersion, which corresponds to the zero sound of Landaus Fermi liquid theory. The Coulomb interaction modifies it to a plasmon mode in the long-wavelength limit, which disperses as the square-root of the wavenumber. Remarkably, our results show that the zero sound and plasmon modes show the same behaviour as in a Fermi liquid, although an NFL is fundamentally different from the former.



قيم البحث

اقرأ أيضاً

We calculate the damping gamma_q of collective density oscillations (zero sound) in a one-dimensional Fermi gas with dimensionless forward scattering interaction F and quadratic energy dispersion k^2 / 2 m at zero temperature. For wave-vectors | q| / k_F small compared with F we find to leading order gamma_q = v_F^{-1} m^{-2} Y (F) | q |^3, where v_F is the Fermi velocity, k_F is the Fermi wave-vector, and Y (F) is proportional to F^3 for small F. We also show that zero-sound damping leads to a finite maximum proportional to |k - k_F |^{-2 + 2 eta} of the charge peak in the single-particle spectral function, where eta is the anomalous dimension. Our prediction agrees with photoemission data for the blue bronze K_{0.3}MoO_3.
Non-Fermi liquids in $d=2$ spatial dimensions can arise from coupling a Fermi surface to a gapless boson. At finite temperature, however, the perturbative quantum field theory description breaks down due to infrared divergences. These are caused by v irtual static bosonic modes, and afflict both fermionic and bosonic correlators. We show how these divergences are resolved by self-consistent boson and fermion self-energies that resum an infinite class of diagrams and correct the standard Eliashberg equations. Extending a previous approach in $d=3-epsilon$ dimensions, we find a new thermal non-Fermi liquid regime that violates the scaling laws of the zero temperature fixed point and dominates over a wide range of scales. We conclude that basic properties of quantum phase transitions and quantum-classical crossovers at finite temperature are modified in crucial ways in systems with soft bosonic fluctuations, and we begin a study of some of the phenomenological consequences.
We demonstrate that the plasmon in one-dimensional Coulomb interacting electron fluids can develop a finite-momentum maxon-roton-like nonmonotonic energy-momentum dispersion. Such an unusual nonmonotonicity arises from the strongly interacting $1/r$ Coulomb potential going beyond the conventional band linearization approximation used in the standard bosonization theories of Luttinger liquids. We provide details for the nonmonotonic plasmon dispersion using both bosonization and RPA theories. We also calculate the specific heat including the nonmonotonicity and discuss possibilities for observing the nonmonotonic plasmon dispersion in various physical systems including semiconductor quantum wires, carbon nanotubes, and the twisted bilayer graphene at sub-degree twist angles, which naturally realize one-dimensional domain-wall states.
We provide a current perspective on the rapidly developing field of Majorana zero modes in solid state systems. We emphasize the theoretical prediction, experimental realization, and potential use of Majorana zero modes in future information processi ng devices through braiding-based topological quantum computation. Well-separated Majorana zero modes should manifest non-Abelian braiding statistics suitable for unitary gate operations for topological quantum computation. Recent experimental work, following earlier theoretical predictions, has shown specific signatures consistent with the existence of Majorana modes localized at the ends of semiconductor nanowires in the presence of superconducting proximity effect. We discuss the experimental findings and their theoretical analyses, and provide a perspective on the extent to which the observations indicate the existence of anyonic Majorana zero modes in solid state systems. We also discuss fractional quantum Hall systems (the 5/2 state) in this context. We describe proposed schemes for carrying out braiding with Majorana zero modes as well as the necessary steps for implementing topological quantum computation.
239 - B. Sriram Shastry 2012
We present the detailed formalism of the extremely correlated Fermi liquid theory, developed for treating the physics of the t-J model. We start from the exact Schwinger equation of motion for the Greens function for projected electrons, and develop a systematic expansion in a parameter lambda, relating to the double occupancy. The resulting Greens function has a canonical part arising from an effective Hamiltonian of the auxiliary electrons, and a caparison part, playing the role of a frequency dependent adaptive spectral weight. This adaptive weight balances the requirement at low omega, of the invariance of the Fermi volume, and at high omega, of decaying as c_0/(i omega), with a correlation depleted c_0 <1. The effective Hamiltonian H_{eff} describing the auxiliary Fermions is given a natural interpretation with an effective interaction V_{eff} containing both the exchange J(ij), and the hopping parameters t(ij). It is made Hermitian by adding suitable terms that ultimately vanish, in the symmetrized theory developed in this paper. Simple but important shift invariances of the t-J model are noted with respect to translating its parameters uniformly. These play a crucial role in constraining the form of V_{eff} and also provide checks for further approximations. The auxiliary and physical Greens function satisfy two sum rules, and the Lagrange multipliers for these are identified. A complete set of expressions for the Greens functions to second order in lambda is given, satisfying various invariances. A systematic iterative procedure for higher order approximations is detailed. A superconducting instability of the theory is noted at the simplest level with a high transition temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا