ﻻ يوجد ملخص باللغة العربية
Dark matter particles with Planck-scale mass ($simeq10^{19}text{GeV}/c^2$) arise in well-motivated theories and could be produced by several cosmological mechanisms. Using a blind analysis of data collected over a 813 d live time with DEAP-3600, a 3.3 t single-phase liquid argon-based dark matter experiment at SNOLAB, a search for supermassive dark matter was performed, looking for multiple-scatter signals. No candidate signal events were observed, leading to the first direct detection constraints on Planck-scale mass dark matter. Leading limits constrain dark matter masses between $8.3times10^{6}$ and $1.2times10^{19} text{GeV}/c^2$, and cross sections for scattering on $^{40}$Ar between $1.0times10^{-23}$ and $2.4times10^{-18} text{cm}^2$. These are used to constrain two composite dark matter models.
DEAP-3600 is a single-phase liquid argon detector aiming to directly detect Weakly Interacting Massive Particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to pl
This paper reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr tar
DEAP-3600 is a single-phase liquid argon (LAr) direct-detection dark matter experiment, operating 2 km underground at SNOLAB (Sudbury, Canada). The detector consists of 3279 kg of LAr contained in a spherical acrylic vessel. This paper reports on the
The first-year results from DEAP-3600, a single-phase liquid argon direct-detection dark matter experiment, were recently reported. At first sight, they seem to provide no new constraints, as the limit lies well within the region already excluded by
We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30 eV$c^{-2}$ with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of