ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifelong Computing

55   0   0.0 ( 0 )
 نشر من قبل Danny Weyns
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Computing systems form the backbone of many aspects of our life, hence they are becoming as vital as water, electricity, and road infrastructures for our society. Yet, engineering long running computing systems that achieve their goals in ever-changing environments pose significant challenges. Currently, we can build computing systems that adjust or learn over time to match changes that were anticipated. However, dealing with unanticipated changes, such as anomalies, novelties, new goals or constraints, requires system evolution, which remains in essence a human-driven activity. Given the growing complexity of computing systems and the vast amount of highly complex data to process, this approach will eventually become unmanageable. To break through the status quo, we put forward a new paradigm for the design and operation of computing systems that we coin lifelong computing. The paradigm starts from computing-learning systems that integrate computing/service modules and learning modules. Computing warehouses offer such computing elements together with data sheets and usage guides. When detecting anomalies, novelties, new goals or constraints, a lifelong computing system activates an evolutionary self-learning engine that runs online experiments to determine how the computing-learning system needs to evolve to deal with the changes, thereby changing its architecture and integrating new computing elements from computing warehouses as needed. Depending on the domain at hand, some activities of lifelong computing systems can be supported by humans. We motivate the need for lifelong computing with a future fish farming scenario, outline a blueprint architecture for lifelong computing systems, and highlight key research challenges to realise the vision of lifelong computing.



قيم البحث

اقرأ أيضاً

72 - Qi She , Fan Feng , Qi Liu 2020
This report summarizes IROS 2019-Lifelong Robotic Vision Competition (Lifelong Object Recognition Challenge) with methods and results from the top $8$ finalists (out of over~$150$ teams). The competition dataset (L)ifel(O)ng (R)obotic V(IS)ion (OpenL ORIS) - Object Recognition (OpenLORIS-object) is designed for driving lifelong/continual learning research and application in robotic vision domain, with everyday objects in home, office, campus, and mall scenarios. The dataset explicitly quantifies the variants of illumination, object occlusion, object size, camera-object distance/angles, and clutter information. Rules are designed to quantify the learning capability of the robotic vision system when faced with the objects appearing in the dynamic environments in the contest. Individual reports, dataset information, rules, and released source code can be found at the project homepage: https://lifelong-robotic-vision.github.io/competition/.
In biological learning, data are used to improve performance not only on the current task, but also on previously encountered and as yet unencountered tasks. In contrast, classical machine learning starts from a blank slate, or tabula rasa, using dat a only for the single task at hand. While typical transfer learning algorithms can improve performance on future tasks, their performance on prior tasks degrades upon learning new tasks (called catastrophic forgetting). Many recent approaches for continual or lifelong learning have attempted to maintain performance given new tasks. But striving to avoid forgetting sets the goal unnecessarily low: the goal of lifelong learning, whether biological or artificial, should be to improve performance on all tasks (including past and future) with any new data. We propose omnidirectional transfer learning algorithms, which includes two special cases of interest: decision forests and deep networks. Our key insight is the development of the omni-voter layer, which ensembles representations learned independently on all tasks to jointly decide how to proceed on any given new data point, thereby improving performance on both past and future tasks. Our algorithms demonstrate omnidirectional transfer in a variety of simulated and real data scenarios, including tabular data, image data, spoken data, and adversarial tasks. Moreover, they do so with quasilinear space and time complexity.
Runtime verification is a computing analysis paradigm based on observing a system at runtime (to check its expected behaviour) by means of monitors generated from formal specifications. Distributed runtime verification is runtime verification in conn ection with distributed systems: it comprises both monitoring of distributed systems and using distributed systems for monitoring. Aggregate computing is a programming paradigm based on a reference computing machine that is the aggregate collection of devices that cooperatively carry out a computational process: the details of behaviour, position and number of devices are largely abstracted away, to be replaced with a space-filling computational environment. In this position paper we argue, by means of simple examples, that aggregate computing is particularly well suited for implementing distributed monitors. Our aim is to foster further research on how to generate aggregate computing monitors from suitable formal specifications.
Quantum computing (QC) is an emerging computing paradigm with potential to revolutionize the field of computing. QC is a field that is quickly developing globally and has high barriers of entry. In this paper we explore both successful contributors t o the field as well as wider QC community with the goal of understanding the backgrounds and training that helped them succeed. We gather data on 148 contributors to open-source quantum computing projects hosted on GitHub and survey 46 members of QC community. Our findings show that QC practitioners and enthusiasts have diverse backgrounds, with most of them having a PhD and trained in physics or computer science. We observe a lack of educational resources on quantum computing. Our goal for these findings is to start a conversation about how best to prepare the next generation of QC researchers and practitioners.
86 - Daniel Kraus 2018
ReTest is a novel testing tool for Java applications with a graphical user interface (GUI), combining monkey testing and difference testing. Since this combination sidesteps the oracle problem, it enables the generation of GUI-based regression tests. ReTest makes use of evolutionary computing (EC), particularly a genetic algorithm (GA), to optimize these tests towards code coverage. While this is indeed a desirable goal in terms of software testing and potentially finds many bugs, it lacks one major ingredient: human behavior. Consequently, human testers often find the results less reasonable and difficult to interpret. This thesis proposes a new approach to improve the initial population of the GA with the aid of machine learning (ML), forming an ML-technique enhanced-EC (MLEC) algorithm. In order to do so, existing tests are exploited to extract information on how human testers use the given GUI. The obtained data is then utilized to train an artificial neural network (ANN), which ranks the available GUI actions respectively their underlying GUI components at runtime---reducing the gap between manually created and automatically generated regression tests. Although the approach is implemented on top of ReTest, it can be easily used to guide any form of monkey testing. The results show that with only little training data, the ANN is able to reach an accuracy of 82% and the resulting tests represent an improvement without reducing the overall code coverage and performance significantly.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا