ﻻ يوجد ملخص باللغة العربية
In recent years, numerical models that were developed for Earth have been adapted to study exoplanetary climates to understand how the broad range of possible exoplanetary properties affects their climate state. The recent discovery and upcoming characterization of nearby rocky exoplanets opens an avenue toward understanding the processes that shape planetary climates and lead to the persistent habitability of Earth. In this review, we summarize recent advances in understanding the climate of rocky exoplanets, including their atmospheric structure, chemistry, evolution, and atmospheric and oceanic circulation. We describe current and upcoming astronomical observations that will constrain the climate of rocky exoplanets and describe how modeling tools will both inform and interpret future observations.
Mass and radius of planets transiting their host stars are provided by radial velocity and photometric observations. Structural models of solid exoplanet interiors are then constructed by using equations of state for the radial density distribution,
Data suggest that most rocky exoplanets with orbital period $p$ $<$ 100 d (hot rocky exoplanets) formed as gas-rich sub-Neptunes that subsequently lost most of their envelopes, but whether these rocky exoplanets still have atmospheres is unknown. We
The interior composition of exoplanets is not observable, limiting our direct knowledge of their structure, composition, and dynamics. Recently described observational trends suggest that rocky exoplanets, that is, planets without significant volatil
To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Ea
Hydrogen cyanide (HCN) is a key feedstock molecule for the production of lifes building blocks. The formation of HCN in an N$_2$-rich atmospheres requires first that the triple bond between N$equiv$N be severed, and then that the atomic nitrogen find