Embedded Topological Semimetals


الملخص بالإنكليزية

Topological semimetals, such as Dirac, Weyl, or line-node semimetals, are gapless states of matter characterized by their nodal band structures and surface states. In this work, we consider layered (topologically trivial) insulating systems in $D$ dimensions that are composed of coupled multi-layers of $d$-dimensional topological semimetals. Despite being nominal bulk insulators, we show that crystal defects having co-dimension $(D-d)$ can harbor robust lower dimensional topological semimetals embedded in a trivial insulating background. As an example we show that defect-bound topological semimetals can be localized on stacking faults and partial dislocations. Finally, we propose how an embedded topological Dirac semimetal can be identified in experiment by introducing a magnetic field and resolving the relativistic massless Dirac Landau level spectrum at low energies in an otherwise gapped system.

تحميل البحث