ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

91   0   0.0 ( 0 )
 نشر من قبل Fan Liu
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

As the standardization of 5G is being solidified, researchers are speculating what 6G will be. Integrating sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing to exploit the dense cell infrastructure of 5G for constructing a perceptive network. In this paper, we provide a comprehensive overview on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider multiple facets of ISAC and its performance gains. By introducing both ongoing and potential use cases, we shed light on industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits, tradeoffs in physical layer performance, to the tradeoff in cross-layer designs. Next, we discuss signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., communication-assisted sensing and sensing-assisted communications. Finally, we summarize the paper by identifying the potential integration between ISAC and other emerging communication technologies, and their positive impact on the future of wireless networks.



قيم البحث

اقرأ أيضاً

5G wireless communications technology is being launched, with many smart applications being integrated. However, 5G specifications merge the requirements of new emerging technologies forcefully. These include data rate, capacity, latency, reliability , resources sharing, and energy/bit. To meet these challenging demands, research is focusing on 6G wireless communications enabling different technologies and emerging new applications. In this report, the latest research work on 6G technologies and applications is summarized, and the associated research challenges are discussed.
While fifth-generation (5G) communications are being rolled out worldwide, sixth-generation (6G) communications have attracted much attention from both the industry and the academia. Compared with 5G, 6G will have a wider frequency band, higher trans mission rate, spectrum efficiency, greater connection capacity, shorter delay, broader coverage, and more robust anti-interference capability to satisfy various network requirements. This survey presents an insightful understanding of 6G wireless communications by introducing requirements, features, critical technologies, challenges, and applications. First, we give an overview of 6G from perspectives of technologies, security and privacy, and applications. Subsequently, we introduce various 6G technologies and their existing challenges in detail, e.g., artificial intelligence (AI), intelligent surfaces, THz, space-air-ground-sea integrated network, cell-free massive MIMO, etc. Because of these technologies, 6G is expected to outperform existing wireless communication systems regarding the transmission rate, latency, global coverage, etc. Next, we discuss security and privacy techniques that can be applied to protect data in 6G. Since edge devices are expected to gain popularity soon, the vast amount of generated data and frequent data exchange make the leakage of data easily. Finally, we predict real-world applications built on the technologies and features of 6G; for example, smart healthcare, smart city, and smart manufacturing will be implemented by taking advantage of AI.
Driven by the vision of intelligent connection of everything and digital twin towards 6G, a myriad of new applications, such as immersive extended reality, autonomous driving, holographic communications, intelligent industrial internet, will emerge i n the near future, holding the promise to revolutionize the way we live and work. These trends inspire a novel technical design principle that seamlessly integrates two originally decoupled functionalities, i.e., wireless communication and sensing, into one system in a symbiotic way, which is dubbed symbiotic sensing and communications (SSaC), to endow the wireless network with the capability to see and talk to the physical world simultaneously. Noting that the term SSaC is used instead of ISAC (integrated sensing and communications) because the word ``symbiotic/symbiosis is more inclusive and can better accommodate different integration levels and evolution stages of sensing and communications. Aligned with this understanding, this article makes the first attempts to clarify the concept of SSaC, illustrate its vision, envision the three-stage evolution roadmap, namely neutralism, commensalism, and mutualism of SaC. Then, three categories of applications of SSaC are introduced, followed by detailed description of typical use cases in each category. Finally, we summarize the major performance metrics and key enabling technologies for SSaC.
The future 6G of wireless communication networks will have to meet multiple requirements in increasingly demanding levels, either individually or in combinations in small groups. This trend has spurred recent research activities on transceiver hardwa re architectures and novel wireless connectivity concepts. Among the emerging wireless hardware architectures belong the Reconfigurable Intelligent Surfaces (RISs), which are artificial planar structures with integrated electronic circuits that can be programmed to manipulate an incoming ElectroMagnetic (EM) field in a wide variety of functionalities. Incorporating RISs in wireless networks has been recently advocated as a revolutionary means to transform any naturally passive wireless communication environment to an active one. This can be accomplished by deploying cost-effective and easy to coat RISs to the environments objects (e.g., building facades and indoor walls/ceilings), thus, offering increased environmental intelligence for the scope of diverse wireless networking objectives. In this paper, we first provide a brief history on wave propagation control for optics and acoustics, and overview two representative indoor wireless trials at 2.47GHz for spatial EM modulation with a passive discrete RIS. The first trial dating back to 2014 showcases the feasibility of highly accurate spatiotemporal focusing and nulling, while the second very recent one demonstrates that passive RISs can enrich multipath scattering, thus, enabling throughput boosted communication links. Motivated by the late research excitement on the RIS potential for intelligent EM wave propagation modulation, we describe the status on RIS hardware architectures and present key open challenges and future research directions for RIS design and RIS-empowered 6G wireless communications.
Current discussions on the sixth Generation (6G) of wireless communications are envisioning future networks as a unified communication, sensing, and computing platform that intelligently enables diverse services, ranging from immersive to mission cri tical applications. The recently conceived concept of the smart radio environment, enabled by Reconfigurable Intelligent Surfaces (RISs), contributes towards this intelligent networking trend, offering programmable propagation of information-bearing signals, which can be jointly optimized with transceiver operations. Typical RIS implementations include metasurfaces with nearly passive meta-atoms, allowing to solely reflect the incident wave in an externally controllable way. However, this purely reflective nature induces significant challenges in the RIS orchestration from the wireless network. For example, channel estimation, which is essential for coherent communications in RIS-empowered wireless networks, is quite challenging with the available RIS designs. This article introduces the concept of Hybrid reflecting and sensing RISs (HRISs), which enables metasurfaces to reflect the impinging signal in a controllable manner, while simultaneously sense a portion of it. The sensing capability of HRISs facilitates various network management functionalities, including channel estimation and localization. We discuss a hardware design for HRISs and detail a full-wave proof-of-concept. We highlight their distinctive properties in comparison to reflective RISs and active relays, and present a simulation study evaluating the HRIS capability for performing channel estimation. Future research challenges and opportunities arising from the concept of HRISs are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا