ﻻ يوجد ملخص باللغة العربية
Angle-resolved photoelectron spectroscopy is an extremely powerful probe of materials to access the occupied electronic structure with energy and momentum resolution. However, it remains blind to those dynamic states above the Fermi level that determine technologically relevant transport properties. In this work, we extend band structure mapping into the unoccupied states and across the entire Brillouin zone by using a state-of-the-art high repetition rate, extreme ultraviolet fem- tosecond light source to probe optically excited samples. The wide-ranging applicability and power of this approach are demonstrated by measurements on the 2D semiconductor WSe2, where the energy-momentum dispersion of valence and conduction bands are observed in a single experiment. This provides a direct momentum-resolved view not only on the complete out-of-equilibrium band gap but also on its renormalization induced by electron-hole interaction and screening. Our work establishes a new benchmark for measuring the band structure of materials, with direct access to the energy-momentum dispersion of the excited-state spectral function.
A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy,
Optical and microwave double resonance techniques are used to obtain the excited state structure of single nitrogen-vacancy centers in diamond. The excited state is an orbital doublet and it is shown that it can be split and associated transition str
The low-temperature resistance of a conducting LaAlO3/SrTiO3 interface with a 10 nm thick LaAlO3 film decreases by more than 50% after illumination with light of energy higher than the SrTiO3 band-gap. We explain our observations by optical excitatio
A novel Bloch-waves based one-step theory of photoemission is developed within the augmented plane wave formalism. Implications of multi-Bloch-wave structure of photoelectron final states for band mapping are established. Interference between Bloch c
Domain structure of paracetamol -- popular antipyretic analgesic -- was investigated by infrared (IR) spectroscopy using synchrotron radiation. Absorbance and retardance maps reveal molecular orientation inside the micro-domains of the paracetamol fo