ترغب بنشر مسار تعليمي؟ اضغط هنا

Colour remote sensing of the impact of artificial light at night (II): Calibration of DSLR-based images from the International Space Station

70   0   0.0 ( 0 )
 نشر من قبل Alejandro S\\'anchez de Miguel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nighttime images taken with DSLR cameras from the International Space Station (ISS) can provide valuable information on the spatial and temporal variation of artificial nighttime lighting on Earth. In particular, this is the only source of historical and current visible multispectral data across the world (DMSP/OLS and SNPP/VIIRS-DNB data are panchromatic and multispectral in the infrared but not at visible wavelengths). The ISS images require substantial processing and proper calibration to exploit intensities and ratios from the RGB channels. Here we describe the different calibration steps, addressing in turn Decodification, Linearity correction (ISO dependent), Flat field/Vignetting, Spectral characterization of the channels, Astrometric calibration/georeferencing, Photometric calibration (stars)/Radiometric correction (settings correction - by exposure time, ISO, lens transmittance, etc) and Transmittance correction (window transmittance, atmospheric correction). We provide an example of the application of this processing method to an image of Spain.



قيم البحث

اقرأ أيضاً

72 - Y. Asaoka , Y. Akaike , Y. Komiya 2017
In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began tocollect data. CALET will measure the cos mic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.
The Atmosphere-Space Interactions Monitor (ASIM) is an instrument suite on the International Space Station (ISS) for measurements of lightning, Transient Luminous Events (TLEs) and Terrestrial Gamma-ray Flashes (TGFs). Developed in the framework of t he European Space Agency (ESA), it was launched April 2, 2018 on the SpaceX CRS-14 flight to the ISS. ASIM was mounted on an external platform of ESAs Columbus module eleven days later and is planned to take measurements during minimum 3 years.
The rotational Doppler effect associated with lights orbital angular momentum (OAM) has been found as a powerful tool to detect rotating bodies. However, this method was only demonstrated experimentally on the laboratory scale under well controlled c onditions so far. And its real potential lies at the practical applications in the field of remote sensing. We have established a 120-meter long free-space link between the rooftops of two buildings and show that both the rotation speed and the rotational symmetry of objects can be identified from the detected rotational Doppler frequency shift signal at photon count level. Effects of possible slight misalignments and atmospheric turbulences are quantitatively analyzed in terms of mode power spreading to the adjacent modes as well as the transfer of rotational frequency shifts. Moreover, our results demonstrate that with the preknowledge of the objects rotational symmetry one may always deduce the rotation speed no matter how strong the coupling to neighboring modes is. Without any information of the rotating object, the deduction of the objects symmetry and rotational speed may still be obtained as long as the mode spreading efficiency does not exceed 50 %. Our work supports the feasibility of a practical sensor to remotely detect both the speed and symmetry of rotating bodies.
Monitor of All-sky X-ray Image (MAXI) is mounted on the International Space Station (ISS). Since 2009 it has been scanning the whole sky in every 92 minutes with ISS rotation. Due to high particle background at high latitude regions the carbon anodes of three GSC cameras were broken. We limit the GSC operation to low-latitude region around equator. GSC is suffering a double high background from Gamma-ray altimeter of Soyuz spacecraft. MAXI issued the 37-month catalog with 500 sources above ~0.6 mCrab in 4-10 keV. MAXI issued 133 to Astronomers Telegram and 44 to Gammaray burst Coordinated Network so far. One GSC camera had a small gas leak by a micrometeorite. Since 2013 June, the 1.4 atm Xe pressure went down to 0.6 atm in 2014 May 23. By gradually reducing the high voltage we keep using the proportional counter. SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble and north polar spur, as well as it found a fast soft X-ray nova MAXI J0158-744. Although we operate CCD with charge-injection, the energy resolution is degrading. In the 4.5 years of operation MAXI discovered 6 of 12 new black holes. The long-term behaviors of these sources can be classified into two types of the outbursts, 3 Fast Rise Exponential Decay (FRED) and 3 Fast Rise and Flat Top (FRFT). The cause of types is still unknown.
Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Arrays (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in cite{Li_2018} and cite{Wenyang_2019} studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the power spectrum from tandem calibration are significant. To understand this result, we analyze both the calibration solutions themselves and the effects on the power spectrum over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of model-incompleteness error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا