ﻻ يوجد ملخص باللغة العربية
On complete noncompact Riemannian manifolds with non-negative Ricci curvature, Li-Schoen proved the uniform Poincare inequality for any ge odesic ball. In this note, we obtain the sharp lower bound of the first Dirichlet eigenvalue of such geodesic balls, which implies the sharp Poincare inequality for geodesic balls.
We revisit classical eigenvalue inequalities due to Buser, Cheng, and Gromov on closed Riemannian manifolds, and prove t
We give a new estimate on the lower bound of the first Dirichlet eigenvalue of a compact Riemannian manifold with negative lower bound of Ricci curvature and provide a solution for a conjecture of H. C. Yang.
We compute the first Dirichlet eigenvalue of a geodesic ball in a rotationally symmetric model space in terms of the moment spectrum for the Brownian motion exit times from the ball. This expression implies an estimate as exact as you want for the fi
We show that the scalar curvature of a steady gradient Ricci soliton satisfying that the ratio between the square norm of the Ricci tensor and the square of the scalar curvature is bounded by one half, is boundend from below by the hyperbolic secant
Given a Riemmanian manifold, we provide a new method to compute a sharp upper bound for the first eigenvalue of the Laplacian for the Dirichlet problem on a geodesic ball of radius less than the injectivity radius of the manifold. This upper bound is