ﻻ يوجد ملخص باللغة العربية
A central question in federated learning (FL) is how to design optimization algorithms that minimize the communication cost of training a model over heterogeneous data distributed across many clients. A popular technique for reducing communication is the use of local steps, where clients take multiple optimization steps over local data before communicating with the server (e.g., FedAvg, SCAFFOLD). This contrasts with centralized methods, where clients take one optimization step per communication round (e.g., Minibatch SGD). A recent lower bound on the communication complexity of first-order methods shows that centralized methods are optimal over highly-heterogeneous data, whereas local methods are optimal over purely homogeneous data [Woodworth et al., 2020]. For intermediate heterogeneity levels, no algorithm is known to match the lower bound. In this paper, we propose a multistage optimization scheme that nearly matches the lower bound across all heterogeneity levels. The idea is to first run a local method up to a heterogeneity-induced error floor; next, we switch to a centralized method for the remaining steps. Our analysis may help explain empirically-successful stepsize decay methods in FL [Charles et al., 2020; Reddi et al., 2020]. We demonstrate the schemes practical utility in image classification tasks.
Federated learning is a widely used distributed deep learning framework that protects the privacy of each client by exchanging model parameters rather than raw data. However, federated learning suffers from high communication costs, as a considerable
Federated learning (FL) is a distributed learning paradigm that enables a large number of devices to collaboratively learn a model without sharing their raw data. Despite its practical efficiency and effectiveness, the iterative on-device learning pr
We consider strongly convex-concave minimax problems in the federated setting, where the communication constraint is the main bottleneck. When clients are arbitrarily heterogeneous, a simple Minibatch Mirror-prox achieves the best performance. As the
Federated learning (FL) is a distributed learning paradigm that enables a large number of mobile devices to collaboratively learn a model under the coordination of a central server without sharing their raw data. Despite its practical efficiency and
Federated learning (FL) offers a solution to train a global machine learning model while still maintaining data privacy, without needing access to data stored locally at the clients. However, FL suffers performance degradation when client data distri