Industrial automation is one of the key application scenarios of the fifth (5G) wireless communication network. The high requirements of industrial communication systems for latency and reliability lead to the need for industrial channel models to support massive multiple-input multipleoutput (MIMO) and millimeter wave communication. In addition, due to the complex environment, huge communication equipment, and numerous metal scatterers, industrial channels have special rich dense multipath components (DMCs). Considering these characteristics, a novel three dimensional (3D) non-stationary geometry-based stochastic model (GBSM) for industrial automation wireless channel is proposed in this paper. Channel characteristics including the transfer function, time-varying space-time-frequency correlation function (STFCF), and root mean square (RMS) delay spread, model parameters including delay scaling factor and power decay factor are studied and analyzed. Besides, according to the indoor factory scenario classification of the 3rd Generation Partnership Project (3GPP) TR 38.901, two sub-scenarios considering the clutter density are simulated. Simulated cumulative distribution functions (CDFs) of RMS delay spread show a good consistency with the measurement data.